Step |
Hyp |
Ref |
Expression |
1 |
|
heibor.1 |
|
2 |
|
simpll |
|
3 |
|
simplr |
|
4 |
|
simprl |
|
5 |
|
simprr |
|
6 |
1 2 3 4 5
|
heibor1lem |
|
7 |
6
|
expr |
|
8 |
7
|
ralrimiva |
|
9 |
|
nnuz |
|
10 |
|
1zzd |
|
11 |
|
simpl |
|
12 |
9 1 10 11
|
iscmet3 |
|
13 |
8 12
|
mpbird |
|
14 |
|
simplr |
|
15 |
|
metxmet |
|
16 |
|
id |
|
17 |
|
rpxr |
|
18 |
1
|
blopn |
|
19 |
15 16 17 18
|
syl3an |
|
20 |
19
|
3com23 |
|
21 |
20
|
3expa |
|
22 |
|
eleq1a |
|
23 |
21 22
|
syl |
|
24 |
23
|
rexlimdva |
|
25 |
24
|
adantlr |
|
26 |
25
|
abssdv |
|
27 |
15
|
ad2antrr |
|
28 |
1
|
mopnuni |
|
29 |
27 28
|
syl |
|
30 |
|
blcntr |
|
31 |
15 30
|
syl3an1 |
|
32 |
31
|
3com23 |
|
33 |
32
|
3expa |
|
34 |
|
ovex |
|
35 |
34
|
elabrex |
|
36 |
35
|
adantl |
|
37 |
|
elunii |
|
38 |
33 36 37
|
syl2anc |
|
39 |
38
|
ralrimiva |
|
40 |
39
|
adantlr |
|
41 |
|
nfcv |
|
42 |
|
nfre1 |
|
43 |
42
|
nfab |
|
44 |
43
|
nfuni |
|
45 |
41 44
|
dfss3f |
|
46 |
40 45
|
sylibr |
|
47 |
29 46
|
eqsstrrd |
|
48 |
26
|
unissd |
|
49 |
47 48
|
eqssd |
|
50 |
|
eqid |
|
51 |
50
|
cmpcov |
|
52 |
14 26 49 51
|
syl3anc |
|
53 |
|
elin |
|
54 |
|
ancom |
|
55 |
53 54
|
bitri |
|
56 |
55
|
anbi1i |
|
57 |
|
anass |
|
58 |
56 57
|
bitri |
|
59 |
58
|
rexbii2 |
|
60 |
52 59
|
sylib |
|
61 |
|
ancom |
|
62 |
|
eqcom |
|
63 |
29
|
eqeq1d |
|
64 |
62 63
|
bitr2id |
|
65 |
64
|
anbi1d |
|
66 |
61 65
|
syl5bb |
|
67 |
|
elpwi |
|
68 |
|
ssabral |
|
69 |
67 68
|
sylib |
|
70 |
69
|
anim2i |
|
71 |
66 70
|
syl6bi |
|
72 |
71
|
reximdv |
|
73 |
60 72
|
mpd |
|
74 |
73
|
ralrimiva |
|
75 |
|
istotbnd |
|
76 |
11 74 75
|
sylanbrc |
|
77 |
13 76
|
jca |
|