| Step |
Hyp |
Ref |
Expression |
| 1 |
|
heibor.1 |
|
| 2 |
|
heibor.3 |
|
| 3 |
|
heiborlem1.4 |
|
| 4 |
|
sseq1 |
|
| 5 |
4
|
rexbidv |
|
| 6 |
5
|
notbid |
|
| 7 |
3 6 2
|
elab2 |
|
| 8 |
7
|
con2bii |
|
| 9 |
8
|
ralbii |
|
| 10 |
|
ralnex |
|
| 11 |
9 10
|
bitr2i |
|
| 12 |
|
unieq |
|
| 13 |
12
|
sseq2d |
|
| 14 |
13
|
ac6sfi |
|
| 15 |
14
|
ex |
|
| 16 |
15
|
adantr |
|
| 17 |
|
sseq1 |
|
| 18 |
17
|
rexbidv |
|
| 19 |
18
|
notbid |
|
| 20 |
19 2
|
elab2g |
|
| 21 |
20
|
ibi |
|
| 22 |
|
frn |
|
| 23 |
22
|
ad2antrl |
|
| 24 |
|
inss1 |
|
| 25 |
23 24
|
sstrdi |
|
| 26 |
|
sspwuni |
|
| 27 |
25 26
|
sylib |
|
| 28 |
|
vex |
|
| 29 |
28
|
rnex |
|
| 30 |
29
|
uniex |
|
| 31 |
30
|
elpw |
|
| 32 |
27 31
|
sylibr |
|
| 33 |
|
ffn |
|
| 34 |
33
|
ad2antrl |
|
| 35 |
|
dffn4 |
|
| 36 |
34 35
|
sylib |
|
| 37 |
|
fofi |
|
| 38 |
36 37
|
syldan |
|
| 39 |
|
inss2 |
|
| 40 |
23 39
|
sstrdi |
|
| 41 |
|
unifi |
|
| 42 |
38 40 41
|
syl2anc |
|
| 43 |
32 42
|
elind |
|
| 44 |
43
|
adantlr |
|
| 45 |
|
simplr |
|
| 46 |
|
fnfvelrn |
|
| 47 |
33 46
|
sylan |
|
| 48 |
47
|
adantll |
|
| 49 |
|
elssuni |
|
| 50 |
|
uniss |
|
| 51 |
48 49 50
|
3syl |
|
| 52 |
|
sstr2 |
|
| 53 |
51 52
|
syl5com |
|
| 54 |
53
|
ralimdva |
|
| 55 |
54
|
impr |
|
| 56 |
|
iunss |
|
| 57 |
55 56
|
sylibr |
|
| 58 |
57
|
adantlr |
|
| 59 |
45 58
|
sstrd |
|
| 60 |
|
unieq |
|
| 61 |
60
|
sseq2d |
|
| 62 |
61
|
rspcev |
|
| 63 |
44 59 62
|
syl2anc |
|
| 64 |
21 63
|
nsyl3 |
|
| 65 |
64
|
ex |
|
| 66 |
65
|
exlimdv |
|
| 67 |
16 66
|
syld |
|
| 68 |
11 67
|
biimtrid |
|
| 69 |
68
|
con4d |
|
| 70 |
69
|
3impia |
|