Metamath Proof Explorer


Theorem heiborlem3

Description: Lemma for heibor . Using countable choice ax-cc , we have fixed in advance a collection of finite 2 ^ -u n nets ( Fn ) for X (note that an r -net is a set of points in X whose r -balls cover X ). The set G is the subset of these points whose corresponding balls have no finite subcover (i.e. in the set K ). If the theorem was false, then X would be in K , and so some ball at each level would also be in K . But we can say more than this; given a ball ( y B n ) on level n , since level n + 1 covers the space and thus also ( y B n ) , using heiborlem1 there is a ball on the next level whose intersection with ( y B n ) also has no finite subcover. Now since the set G is a countable union of finite sets, it is countable (which needs ax-cc via iunctb ), and so we can apply ax-cc to G directly to get a function from G to itself, which points from each ball in K to a ball on the next level in K , and such that the intersection between these balls is also in K . (Contributed by Jeff Madsen, 18-Jan-2014)

Ref Expression
Hypotheses heibor.1 J = MetOpen D
heibor.3 K = u | ¬ v 𝒫 U Fin u v
heibor.4 G = y n | n 0 y F n y B n K
heibor.5 B = z X , m 0 z ball D 1 2 m
heibor.6 φ D CMet X
heibor.7 φ F : 0 𝒫 X Fin
heibor.8 φ n 0 X = y F n y B n
Assertion heiborlem3 φ g x G g x G 2 nd x + 1 B x g x B 2 nd x + 1 K

Proof

Step Hyp Ref Expression
1 heibor.1 J = MetOpen D
2 heibor.3 K = u | ¬ v 𝒫 U Fin u v
3 heibor.4 G = y n | n 0 y F n y B n K
4 heibor.5 B = z X , m 0 z ball D 1 2 m
5 heibor.6 φ D CMet X
6 heibor.7 φ F : 0 𝒫 X Fin
7 heibor.8 φ n 0 X = y F n y B n
8 nn0ex 0 V
9 fvex F t V
10 snex t V
11 9 10 xpex F t × t V
12 8 11 iunex t 0 F t × t V
13 3 relopabiv Rel G
14 1st2nd Rel G x G x = 1 st x 2 nd x
15 13 14 mpan x G x = 1 st x 2 nd x
16 15 eleq1d x G x G 1 st x 2 nd x G
17 df-br 1 st x G 2 nd x 1 st x 2 nd x G
18 16 17 bitr4di x G x G 1 st x G 2 nd x
19 fvex 1 st x V
20 fvex 2 nd x V
21 1 2 3 19 20 heiborlem2 1 st x G 2 nd x 2 nd x 0 1 st x F 2 nd x 1 st x B 2 nd x K
22 18 21 bitrdi x G x G 2 nd x 0 1 st x F 2 nd x 1 st x B 2 nd x K
23 22 ibi x G 2 nd x 0 1 st x F 2 nd x 1 st x B 2 nd x K
24 20 snid 2 nd x 2 nd x
25 opelxp 1 st x 2 nd x F 2 nd x × 2 nd x 1 st x F 2 nd x 2 nd x 2 nd x
26 24 25 mpbiran2 1 st x 2 nd x F 2 nd x × 2 nd x 1 st x F 2 nd x
27 fveq2 t = 2 nd x F t = F 2 nd x
28 sneq t = 2 nd x t = 2 nd x
29 27 28 xpeq12d t = 2 nd x F t × t = F 2 nd x × 2 nd x
30 29 eleq2d t = 2 nd x 1 st x 2 nd x F t × t 1 st x 2 nd x F 2 nd x × 2 nd x
31 30 rspcev 2 nd x 0 1 st x 2 nd x F 2 nd x × 2 nd x t 0 1 st x 2 nd x F t × t
32 26 31 sylan2br 2 nd x 0 1 st x F 2 nd x t 0 1 st x 2 nd x F t × t
33 eliun 1 st x 2 nd x t 0 F t × t t 0 1 st x 2 nd x F t × t
34 32 33 sylibr 2 nd x 0 1 st x F 2 nd x 1 st x 2 nd x t 0 F t × t
35 34 3adant3 2 nd x 0 1 st x F 2 nd x 1 st x B 2 nd x K 1 st x 2 nd x t 0 F t × t
36 23 35 syl x G 1 st x 2 nd x t 0 F t × t
37 15 36 eqeltrd x G x t 0 F t × t
38 37 ssriv G t 0 F t × t
39 ssdomg t 0 F t × t V G t 0 F t × t G t 0 F t × t
40 12 38 39 mp2 G t 0 F t × t
41 nn0ennn 0
42 nnenom ω
43 41 42 entri 0 ω
44 endom 0 ω 0 ω
45 43 44 ax-mp 0 ω
46 vex t V
47 9 46 xpsnen F t × t F t
48 inss2 𝒫 X Fin Fin
49 6 ffvelrnda φ t 0 F t 𝒫 X Fin
50 48 49 sselid φ t 0 F t Fin
51 isfinite F t Fin F t ω
52 sdomdom F t ω F t ω
53 51 52 sylbi F t Fin F t ω
54 50 53 syl φ t 0 F t ω
55 endomtr F t × t F t F t ω F t × t ω
56 47 54 55 sylancr φ t 0 F t × t ω
57 56 ralrimiva φ t 0 F t × t ω
58 iunctb 0 ω t 0 F t × t ω t 0 F t × t ω
59 45 57 58 sylancr φ t 0 F t × t ω
60 domtr G t 0 F t × t t 0 F t × t ω G ω
61 40 59 60 sylancr φ G ω
62 23 simp1d x G 2 nd x 0
63 peano2nn0 2 nd x 0 2 nd x + 1 0
64 62 63 syl x G 2 nd x + 1 0
65 ffvelrn F : 0 𝒫 X Fin 2 nd x + 1 0 F 2 nd x + 1 𝒫 X Fin
66 6 64 65 syl2an φ x G F 2 nd x + 1 𝒫 X Fin
67 48 66 sselid φ x G F 2 nd x + 1 Fin
68 iunin2 t F 2 nd x + 1 B x t B 2 nd x + 1 = B x t F 2 nd x + 1 t B 2 nd x + 1
69 oveq1 y = t y B n = t B n
70 69 cbviunv y F n y B n = t F n t B n
71 fveq2 n = 2 nd x + 1 F n = F 2 nd x + 1
72 71 iuneq1d n = 2 nd x + 1 t F n t B n = t F 2 nd x + 1 t B n
73 70 72 syl5eq n = 2 nd x + 1 y F n y B n = t F 2 nd x + 1 t B n
74 oveq2 n = 2 nd x + 1 t B n = t B 2 nd x + 1
75 74 iuneq2d n = 2 nd x + 1 t F 2 nd x + 1 t B n = t F 2 nd x + 1 t B 2 nd x + 1
76 73 75 eqtrd n = 2 nd x + 1 y F n y B n = t F 2 nd x + 1 t B 2 nd x + 1
77 76 eqeq2d n = 2 nd x + 1 X = y F n y B n X = t F 2 nd x + 1 t B 2 nd x + 1
78 77 rspccva n 0 X = y F n y B n 2 nd x + 1 0 X = t F 2 nd x + 1 t B 2 nd x + 1
79 7 64 78 syl2an φ x G X = t F 2 nd x + 1 t B 2 nd x + 1
80 79 ineq2d φ x G B x X = B x t F 2 nd x + 1 t B 2 nd x + 1
81 15 fveq2d x G B x = B 1 st x 2 nd x
82 df-ov 1 st x B 2 nd x = B 1 st x 2 nd x
83 81 82 eqtr4di x G B x = 1 st x B 2 nd x
84 83 adantl φ x G B x = 1 st x B 2 nd x
85 inss1 𝒫 X Fin 𝒫 X
86 ffvelrn F : 0 𝒫 X Fin 2 nd x 0 F 2 nd x 𝒫 X Fin
87 6 62 86 syl2an φ x G F 2 nd x 𝒫 X Fin
88 85 87 sselid φ x G F 2 nd x 𝒫 X
89 88 elpwid φ x G F 2 nd x X
90 23 simp2d x G 1 st x F 2 nd x
91 90 adantl φ x G 1 st x F 2 nd x
92 89 91 sseldd φ x G 1 st x X
93 62 adantl φ x G 2 nd x 0
94 oveq1 z = 1 st x z ball D 1 2 m = 1 st x ball D 1 2 m
95 oveq2 m = 2 nd x 2 m = 2 2 nd x
96 95 oveq2d m = 2 nd x 1 2 m = 1 2 2 nd x
97 96 oveq2d m = 2 nd x 1 st x ball D 1 2 m = 1 st x ball D 1 2 2 nd x
98 ovex 1 st x ball D 1 2 2 nd x V
99 94 97 4 98 ovmpo 1 st x X 2 nd x 0 1 st x B 2 nd x = 1 st x ball D 1 2 2 nd x
100 92 93 99 syl2anc φ x G 1 st x B 2 nd x = 1 st x ball D 1 2 2 nd x
101 84 100 eqtrd φ x G B x = 1 st x ball D 1 2 2 nd x
102 cmetmet D CMet X D Met X
103 5 102 syl φ D Met X
104 metxmet D Met X D ∞Met X
105 103 104 syl φ D ∞Met X
106 105 adantr φ x G D ∞Met X
107 2nn 2
108 nnexpcl 2 2 nd x 0 2 2 nd x
109 107 93 108 sylancr φ x G 2 2 nd x
110 109 nnrpd φ x G 2 2 nd x +
111 110 rpreccld φ x G 1 2 2 nd x +
112 111 rpxrd φ x G 1 2 2 nd x *
113 blssm D ∞Met X 1 st x X 1 2 2 nd x * 1 st x ball D 1 2 2 nd x X
114 106 92 112 113 syl3anc φ x G 1 st x ball D 1 2 2 nd x X
115 101 114 eqsstrd φ x G B x X
116 df-ss B x X B x X = B x
117 115 116 sylib φ x G B x X = B x
118 80 117 eqtr3d φ x G B x t F 2 nd x + 1 t B 2 nd x + 1 = B x
119 68 118 syl5eq φ x G t F 2 nd x + 1 B x t B 2 nd x + 1 = B x
120 eqimss2 t F 2 nd x + 1 B x t B 2 nd x + 1 = B x B x t F 2 nd x + 1 B x t B 2 nd x + 1
121 119 120 syl φ x G B x t F 2 nd x + 1 B x t B 2 nd x + 1
122 23 simp3d x G 1 st x B 2 nd x K
123 83 122 eqeltrd x G B x K
124 123 adantl φ x G B x K
125 fvex B x V
126 125 inex1 B x t B 2 nd x + 1 V
127 1 2 126 heiborlem1 F 2 nd x + 1 Fin B x t F 2 nd x + 1 B x t B 2 nd x + 1 B x K t F 2 nd x + 1 B x t B 2 nd x + 1 K
128 67 121 124 127 syl3anc φ x G t F 2 nd x + 1 B x t B 2 nd x + 1 K
129 85 66 sselid φ x G F 2 nd x + 1 𝒫 X
130 129 elpwid φ x G F 2 nd x + 1 X
131 1 mopnuni D ∞Met X X = J
132 105 131 syl φ X = J
133 132 adantr φ x G X = J
134 130 133 sseqtrd φ x G F 2 nd x + 1 J
135 134 sselda φ x G t F 2 nd x + 1 t J
136 135 adantrr φ x G t F 2 nd x + 1 B x t B 2 nd x + 1 K t J
137 64 adantl φ x G 2 nd x + 1 0
138 id t F 2 nd x + 1 t F 2 nd x + 1
139 snfi t B 2 nd x + 1 Fin
140 inss2 B x t B 2 nd x + 1 t B 2 nd x + 1
141 ovex t B 2 nd x + 1 V
142 141 unisn t B 2 nd x + 1 = t B 2 nd x + 1
143 uniiun t B 2 nd x + 1 = g t B 2 nd x + 1 g
144 142 143 eqtr3i t B 2 nd x + 1 = g t B 2 nd x + 1 g
145 140 144 sseqtri B x t B 2 nd x + 1 g t B 2 nd x + 1 g
146 vex g V
147 1 2 146 heiborlem1 t B 2 nd x + 1 Fin B x t B 2 nd x + 1 g t B 2 nd x + 1 g B x t B 2 nd x + 1 K g t B 2 nd x + 1 g K
148 139 145 147 mp3an12 B x t B 2 nd x + 1 K g t B 2 nd x + 1 g K
149 eleq1 g = t B 2 nd x + 1 g K t B 2 nd x + 1 K
150 141 149 rexsn g t B 2 nd x + 1 g K t B 2 nd x + 1 K
151 148 150 sylib B x t B 2 nd x + 1 K t B 2 nd x + 1 K
152 ovex 2 nd x + 1 V
153 1 2 3 46 152 heiborlem2 t G 2 nd x + 1 2 nd x + 1 0 t F 2 nd x + 1 t B 2 nd x + 1 K
154 153 biimpri 2 nd x + 1 0 t F 2 nd x + 1 t B 2 nd x + 1 K t G 2 nd x + 1
155 137 138 151 154 syl3an φ x G t F 2 nd x + 1 B x t B 2 nd x + 1 K t G 2 nd x + 1
156 155 3expb φ x G t F 2 nd x + 1 B x t B 2 nd x + 1 K t G 2 nd x + 1
157 simprr φ x G t F 2 nd x + 1 B x t B 2 nd x + 1 K B x t B 2 nd x + 1 K
158 136 156 157 jca32 φ x G t F 2 nd x + 1 B x t B 2 nd x + 1 K t J t G 2 nd x + 1 B x t B 2 nd x + 1 K
159 158 ex φ x G t F 2 nd x + 1 B x t B 2 nd x + 1 K t J t G 2 nd x + 1 B x t B 2 nd x + 1 K
160 159 reximdv2 φ x G t F 2 nd x + 1 B x t B 2 nd x + 1 K t J t G 2 nd x + 1 B x t B 2 nd x + 1 K
161 128 160 mpd φ x G t J t G 2 nd x + 1 B x t B 2 nd x + 1 K
162 161 ralrimiva φ x G t J t G 2 nd x + 1 B x t B 2 nd x + 1 K
163 1 fvexi J V
164 163 uniex J V
165 breq1 t = g x t G 2 nd x + 1 g x G 2 nd x + 1
166 oveq1 t = g x t B 2 nd x + 1 = g x B 2 nd x + 1
167 166 ineq2d t = g x B x t B 2 nd x + 1 = B x g x B 2 nd x + 1
168 167 eleq1d t = g x B x t B 2 nd x + 1 K B x g x B 2 nd x + 1 K
169 165 168 anbi12d t = g x t G 2 nd x + 1 B x t B 2 nd x + 1 K g x G 2 nd x + 1 B x g x B 2 nd x + 1 K
170 164 169 axcc4dom G ω x G t J t G 2 nd x + 1 B x t B 2 nd x + 1 K g g : G J x G g x G 2 nd x + 1 B x g x B 2 nd x + 1 K
171 61 162 170 syl2anc φ g g : G J x G g x G 2 nd x + 1 B x g x B 2 nd x + 1 K
172 exsimpr g g : G J x G g x G 2 nd x + 1 B x g x B 2 nd x + 1 K g x G g x G 2 nd x + 1 B x g x B 2 nd x + 1 K
173 171 172 syl φ g x G g x G 2 nd x + 1 B x g x B 2 nd x + 1 K