| Step |
Hyp |
Ref |
Expression |
| 1 |
|
heibor.1 |
|
| 2 |
|
heibor.3 |
|
| 3 |
|
heibor.4 |
|
| 4 |
|
heibor.5 |
|
| 5 |
|
heibor.6 |
|
| 6 |
|
heibor.7 |
|
| 7 |
|
heibor.8 |
|
| 8 |
|
nn0ex |
|
| 9 |
|
fvex |
|
| 10 |
|
vsnex |
|
| 11 |
9 10
|
xpex |
|
| 12 |
8 11
|
iunex |
|
| 13 |
3
|
relopabiv |
|
| 14 |
|
1st2nd |
|
| 15 |
13 14
|
mpan |
|
| 16 |
15
|
eleq1d |
|
| 17 |
|
df-br |
|
| 18 |
16 17
|
bitr4di |
|
| 19 |
|
fvex |
|
| 20 |
|
fvex |
|
| 21 |
1 2 3 19 20
|
heiborlem2 |
|
| 22 |
18 21
|
bitrdi |
|
| 23 |
22
|
ibi |
|
| 24 |
20
|
snid |
|
| 25 |
|
opelxp |
|
| 26 |
24 25
|
mpbiran2 |
|
| 27 |
|
fveq2 |
|
| 28 |
|
sneq |
|
| 29 |
27 28
|
xpeq12d |
|
| 30 |
29
|
eleq2d |
|
| 31 |
30
|
rspcev |
|
| 32 |
26 31
|
sylan2br |
|
| 33 |
|
eliun |
|
| 34 |
32 33
|
sylibr |
|
| 35 |
34
|
3adant3 |
|
| 36 |
23 35
|
syl |
|
| 37 |
15 36
|
eqeltrd |
|
| 38 |
37
|
ssriv |
|
| 39 |
|
ssdomg |
|
| 40 |
12 38 39
|
mp2 |
|
| 41 |
|
nn0ennn |
|
| 42 |
|
nnenom |
|
| 43 |
41 42
|
entri |
|
| 44 |
|
endom |
|
| 45 |
43 44
|
ax-mp |
|
| 46 |
|
vex |
|
| 47 |
9 46
|
xpsnen |
|
| 48 |
|
inss2 |
|
| 49 |
6
|
ffvelcdmda |
|
| 50 |
48 49
|
sselid |
|
| 51 |
|
isfinite |
|
| 52 |
|
sdomdom |
|
| 53 |
51 52
|
sylbi |
|
| 54 |
50 53
|
syl |
|
| 55 |
|
endomtr |
|
| 56 |
47 54 55
|
sylancr |
|
| 57 |
56
|
ralrimiva |
|
| 58 |
|
iunctb |
|
| 59 |
45 57 58
|
sylancr |
|
| 60 |
|
domtr |
|
| 61 |
40 59 60
|
sylancr |
|
| 62 |
23
|
simp1d |
|
| 63 |
|
peano2nn0 |
|
| 64 |
62 63
|
syl |
|
| 65 |
|
ffvelcdm |
|
| 66 |
6 64 65
|
syl2an |
|
| 67 |
48 66
|
sselid |
|
| 68 |
|
iunin2 |
|
| 69 |
|
oveq1 |
|
| 70 |
69
|
cbviunv |
|
| 71 |
|
fveq2 |
|
| 72 |
71
|
iuneq1d |
|
| 73 |
70 72
|
eqtrid |
|
| 74 |
|
oveq2 |
|
| 75 |
74
|
iuneq2d |
|
| 76 |
73 75
|
eqtrd |
|
| 77 |
76
|
eqeq2d |
|
| 78 |
77
|
rspccva |
|
| 79 |
7 64 78
|
syl2an |
|
| 80 |
79
|
ineq2d |
|
| 81 |
15
|
fveq2d |
|
| 82 |
|
df-ov |
|
| 83 |
81 82
|
eqtr4di |
|
| 84 |
83
|
adantl |
|
| 85 |
|
inss1 |
|
| 86 |
|
ffvelcdm |
|
| 87 |
6 62 86
|
syl2an |
|
| 88 |
85 87
|
sselid |
|
| 89 |
88
|
elpwid |
|
| 90 |
23
|
simp2d |
|
| 91 |
90
|
adantl |
|
| 92 |
89 91
|
sseldd |
|
| 93 |
62
|
adantl |
|
| 94 |
|
oveq1 |
|
| 95 |
|
oveq2 |
|
| 96 |
95
|
oveq2d |
|
| 97 |
96
|
oveq2d |
|
| 98 |
|
ovex |
|
| 99 |
94 97 4 98
|
ovmpo |
|
| 100 |
92 93 99
|
syl2anc |
|
| 101 |
84 100
|
eqtrd |
|
| 102 |
|
cmetmet |
|
| 103 |
5 102
|
syl |
|
| 104 |
|
metxmet |
|
| 105 |
103 104
|
syl |
|
| 106 |
105
|
adantr |
|
| 107 |
|
2nn |
|
| 108 |
|
nnexpcl |
|
| 109 |
107 93 108
|
sylancr |
|
| 110 |
109
|
nnrpd |
|
| 111 |
110
|
rpreccld |
|
| 112 |
111
|
rpxrd |
|
| 113 |
|
blssm |
|
| 114 |
106 92 112 113
|
syl3anc |
|
| 115 |
101 114
|
eqsstrd |
|
| 116 |
|
dfss2 |
|
| 117 |
115 116
|
sylib |
|
| 118 |
80 117
|
eqtr3d |
|
| 119 |
68 118
|
eqtrid |
|
| 120 |
|
eqimss2 |
|
| 121 |
119 120
|
syl |
|
| 122 |
23
|
simp3d |
|
| 123 |
83 122
|
eqeltrd |
|
| 124 |
123
|
adantl |
|
| 125 |
|
fvex |
|
| 126 |
125
|
inex1 |
|
| 127 |
1 2 126
|
heiborlem1 |
|
| 128 |
67 121 124 127
|
syl3anc |
|
| 129 |
85 66
|
sselid |
|
| 130 |
129
|
elpwid |
|
| 131 |
1
|
mopnuni |
|
| 132 |
105 131
|
syl |
|
| 133 |
132
|
adantr |
|
| 134 |
130 133
|
sseqtrd |
|
| 135 |
134
|
sselda |
|
| 136 |
135
|
adantrr |
|
| 137 |
64
|
adantl |
|
| 138 |
|
id |
|
| 139 |
|
snfi |
|
| 140 |
|
inss2 |
|
| 141 |
|
ovex |
|
| 142 |
141
|
unisn |
|
| 143 |
|
uniiun |
|
| 144 |
142 143
|
eqtr3i |
|
| 145 |
140 144
|
sseqtri |
|
| 146 |
|
vex |
|
| 147 |
1 2 146
|
heiborlem1 |
|
| 148 |
139 145 147
|
mp3an12 |
|
| 149 |
|
eleq1 |
|
| 150 |
141 149
|
rexsn |
|
| 151 |
148 150
|
sylib |
|
| 152 |
|
ovex |
|
| 153 |
1 2 3 46 152
|
heiborlem2 |
|
| 154 |
153
|
biimpri |
|
| 155 |
137 138 151 154
|
syl3an |
|
| 156 |
155
|
3expb |
|
| 157 |
|
simprr |
|
| 158 |
136 156 157
|
jca32 |
|
| 159 |
158
|
ex |
|
| 160 |
159
|
reximdv2 |
|
| 161 |
128 160
|
mpd |
|
| 162 |
161
|
ralrimiva |
|
| 163 |
1
|
fvexi |
|
| 164 |
163
|
uniex |
|
| 165 |
|
breq1 |
|
| 166 |
|
oveq1 |
|
| 167 |
166
|
ineq2d |
|
| 168 |
167
|
eleq1d |
|
| 169 |
165 168
|
anbi12d |
|
| 170 |
164 169
|
axcc4dom |
|
| 171 |
61 162 170
|
syl2anc |
|
| 172 |
|
exsimpr |
|
| 173 |
171 172
|
syl |
|