| Step |
Hyp |
Ref |
Expression |
| 1 |
|
heibor.1 |
|
| 2 |
|
heibor.3 |
|
| 3 |
|
heibor.4 |
|
| 4 |
|
heibor.5 |
|
| 5 |
|
heibor.6 |
|
| 6 |
|
heibor.7 |
|
| 7 |
|
heibor.8 |
|
| 8 |
|
heibor.9 |
|
| 9 |
|
heibor.10 |
|
| 10 |
|
heibor.11 |
|
| 11 |
|
fveq2 |
|
| 12 |
|
id |
|
| 13 |
11 12
|
breq12d |
|
| 14 |
13
|
imbi2d |
|
| 15 |
|
fveq2 |
|
| 16 |
|
id |
|
| 17 |
15 16
|
breq12d |
|
| 18 |
17
|
imbi2d |
|
| 19 |
|
fveq2 |
|
| 20 |
|
id |
|
| 21 |
19 20
|
breq12d |
|
| 22 |
21
|
imbi2d |
|
| 23 |
|
fveq2 |
|
| 24 |
|
id |
|
| 25 |
23 24
|
breq12d |
|
| 26 |
25
|
imbi2d |
|
| 27 |
10
|
fveq1i |
|
| 28 |
|
0z |
|
| 29 |
|
seq1 |
|
| 30 |
28 29
|
ax-mp |
|
| 31 |
27 30
|
eqtri |
|
| 32 |
|
0nn0 |
|
| 33 |
3
|
relopabiv |
|
| 34 |
33
|
brrelex1i |
|
| 35 |
9 34
|
syl |
|
| 36 |
|
iftrue |
|
| 37 |
|
eqid |
|
| 38 |
36 37
|
fvmptg |
|
| 39 |
32 35 38
|
sylancr |
|
| 40 |
31 39
|
eqtrid |
|
| 41 |
40 9
|
eqbrtrd |
|
| 42 |
|
df-br |
|
| 43 |
|
fveq2 |
|
| 44 |
|
df-ov |
|
| 45 |
43 44
|
eqtr4di |
|
| 46 |
|
fvex |
|
| 47 |
|
vex |
|
| 48 |
46 47
|
op2ndd |
|
| 49 |
48
|
oveq1d |
|
| 50 |
45 49
|
breq12d |
|
| 51 |
|
fveq2 |
|
| 52 |
|
df-ov |
|
| 53 |
51 52
|
eqtr4di |
|
| 54 |
45 49
|
oveq12d |
|
| 55 |
53 54
|
ineq12d |
|
| 56 |
55
|
eleq1d |
|
| 57 |
50 56
|
anbi12d |
|
| 58 |
57
|
rspccv |
|
| 59 |
8 58
|
syl |
|
| 60 |
42 59
|
biimtrid |
|
| 61 |
|
seqp1 |
|
| 62 |
|
nn0uz |
|
| 63 |
61 62
|
eleq2s |
|
| 64 |
10
|
fveq1i |
|
| 65 |
10
|
fveq1i |
|
| 66 |
65
|
oveq1i |
|
| 67 |
63 64 66
|
3eqtr4g |
|
| 68 |
|
eqeq1 |
|
| 69 |
|
oveq1 |
|
| 70 |
68 69
|
ifbieq2d |
|
| 71 |
|
peano2nn0 |
|
| 72 |
|
nn0p1nn |
|
| 73 |
|
nnne0 |
|
| 74 |
73
|
neneqd |
|
| 75 |
|
iffalse |
|
| 76 |
72 74 75
|
3syl |
|
| 77 |
|
ovex |
|
| 78 |
76 77
|
eqeltrdi |
|
| 79 |
37 70 71 78
|
fvmptd3 |
|
| 80 |
|
nn0cn |
|
| 81 |
|
ax-1cn |
|
| 82 |
|
pncan |
|
| 83 |
80 81 82
|
sylancl |
|
| 84 |
79 76 83
|
3eqtrd |
|
| 85 |
84
|
oveq2d |
|
| 86 |
67 85
|
eqtrd |
|
| 87 |
86
|
breq1d |
|
| 88 |
87
|
biimprd |
|
| 89 |
88
|
adantrd |
|
| 90 |
60 89
|
syl9r |
|
| 91 |
90
|
a2d |
|
| 92 |
14 18 22 26 41 91
|
nn0ind |
|
| 93 |
92
|
impcom |
|