Step |
Hyp |
Ref |
Expression |
1 |
|
heibor.1 |
|
2 |
|
heibor.3 |
|
3 |
|
heibor.4 |
|
4 |
|
heibor.5 |
|
5 |
|
heibor.6 |
|
6 |
|
heibor.7 |
|
7 |
|
heibor.8 |
|
8 |
|
heibor.9 |
|
9 |
|
heibor.10 |
|
10 |
|
heibor.11 |
|
11 |
|
heibor.12 |
|
12 |
|
nnnn0 |
|
13 |
|
inss1 |
|
14 |
6
|
ffvelrnda |
|
15 |
13 14
|
sselid |
|
16 |
15
|
elpwid |
|
17 |
1 2 3 4 5 6 7 8 9 10
|
heiborlem4 |
|
18 |
|
fvex |
|
19 |
|
vex |
|
20 |
1 2 3 18 19
|
heiborlem2 |
|
21 |
20
|
simp2bi |
|
22 |
17 21
|
syl |
|
23 |
16 22
|
sseldd |
|
24 |
12 23
|
sylan2 |
|
25 |
24
|
ralrimiva |
|
26 |
|
fveq2 |
|
27 |
26
|
eleq1d |
|
28 |
27
|
cbvralvw |
|
29 |
25 28
|
sylib |
|
30 |
|
3re |
|
31 |
|
3pos |
|
32 |
30 31
|
elrpii |
|
33 |
|
2nn |
|
34 |
|
nnnn0 |
|
35 |
|
nnexpcl |
|
36 |
33 34 35
|
sylancr |
|
37 |
36
|
nnrpd |
|
38 |
|
rpdivcl |
|
39 |
32 37 38
|
sylancr |
|
40 |
|
opelxpi |
|
41 |
40
|
expcom |
|
42 |
39 41
|
syl |
|
43 |
42
|
ralimia |
|
44 |
29 43
|
syl |
|
45 |
11
|
fmpt |
|
46 |
44 45
|
sylib |
|