Metamath Proof Explorer


Theorem heiborlem5

Description: Lemma for heibor . The function M is a set of point-and-radius pairs suitable for application to caubl . (Contributed by Jeff Madsen, 23-Jan-2014)

Ref Expression
Hypotheses heibor.1 J = MetOpen D
heibor.3 K = u | ¬ v 𝒫 U Fin u v
heibor.4 G = y n | n 0 y F n y B n K
heibor.5 B = z X , m 0 z ball D 1 2 m
heibor.6 φ D CMet X
heibor.7 φ F : 0 𝒫 X Fin
heibor.8 φ n 0 X = y F n y B n
heibor.9 φ x G T x G 2 nd x + 1 B x T x B 2 nd x + 1 K
heibor.10 φ C G 0
heibor.11 S = seq 0 T m 0 if m = 0 C m 1
heibor.12 M = n S n 3 2 n
Assertion heiborlem5 φ M : X × +

Proof

Step Hyp Ref Expression
1 heibor.1 J = MetOpen D
2 heibor.3 K = u | ¬ v 𝒫 U Fin u v
3 heibor.4 G = y n | n 0 y F n y B n K
4 heibor.5 B = z X , m 0 z ball D 1 2 m
5 heibor.6 φ D CMet X
6 heibor.7 φ F : 0 𝒫 X Fin
7 heibor.8 φ n 0 X = y F n y B n
8 heibor.9 φ x G T x G 2 nd x + 1 B x T x B 2 nd x + 1 K
9 heibor.10 φ C G 0
10 heibor.11 S = seq 0 T m 0 if m = 0 C m 1
11 heibor.12 M = n S n 3 2 n
12 nnnn0 k k 0
13 inss1 𝒫 X Fin 𝒫 X
14 6 ffvelrnda φ k 0 F k 𝒫 X Fin
15 13 14 sselid φ k 0 F k 𝒫 X
16 15 elpwid φ k 0 F k X
17 1 2 3 4 5 6 7 8 9 10 heiborlem4 φ k 0 S k G k
18 fvex S k V
19 vex k V
20 1 2 3 18 19 heiborlem2 S k G k k 0 S k F k S k B k K
21 20 simp2bi S k G k S k F k
22 17 21 syl φ k 0 S k F k
23 16 22 sseldd φ k 0 S k X
24 12 23 sylan2 φ k S k X
25 24 ralrimiva φ k S k X
26 fveq2 k = n S k = S n
27 26 eleq1d k = n S k X S n X
28 27 cbvralvw k S k X n S n X
29 25 28 sylib φ n S n X
30 3re 3
31 3pos 0 < 3
32 30 31 elrpii 3 +
33 2nn 2
34 nnnn0 n n 0
35 nnexpcl 2 n 0 2 n
36 33 34 35 sylancr n 2 n
37 36 nnrpd n 2 n +
38 rpdivcl 3 + 2 n + 3 2 n +
39 32 37 38 sylancr n 3 2 n +
40 opelxpi S n X 3 2 n + S n 3 2 n X × +
41 40 expcom 3 2 n + S n X S n 3 2 n X × +
42 39 41 syl n S n X S n 3 2 n X × +
43 42 ralimia n S n X n S n 3 2 n X × +
44 29 43 syl φ n S n 3 2 n X × +
45 11 fmpt n S n 3 2 n X × + M : X × +
46 44 45 sylib φ M : X × +