Step |
Hyp |
Ref |
Expression |
1 |
|
heibor.1 |
|
2 |
|
heibor.3 |
|
3 |
|
heibor.4 |
|
4 |
|
heibor.5 |
|
5 |
|
heibor.6 |
|
6 |
|
heibor.7 |
|
7 |
|
heibor.8 |
|
8 |
|
heibor.9 |
|
9 |
|
heibor.10 |
|
10 |
|
heibor.11 |
|
11 |
|
heibor.12 |
|
12 |
|
nnnn0 |
|
13 |
|
cmetmet |
|
14 |
5 13
|
syl |
|
15 |
|
metxmet |
|
16 |
14 15
|
syl |
|
17 |
16
|
adantr |
|
18 |
|
inss1 |
|
19 |
|
fss |
|
20 |
6 18 19
|
sylancl |
|
21 |
|
peano2nn0 |
|
22 |
|
ffvelrn |
|
23 |
20 21 22
|
syl2an |
|
24 |
23
|
elpwid |
|
25 |
1 2 3 4 5 6 7 8 9 10
|
heiborlem4 |
|
26 |
21 25
|
sylan2 |
|
27 |
|
fvex |
|
28 |
|
ovex |
|
29 |
1 2 3 27 28
|
heiborlem2 |
|
30 |
29
|
simp2bi |
|
31 |
26 30
|
syl |
|
32 |
24 31
|
sseldd |
|
33 |
20
|
ffvelrnda |
|
34 |
33
|
elpwid |
|
35 |
1 2 3 4 5 6 7 8 9 10
|
heiborlem4 |
|
36 |
|
fvex |
|
37 |
|
vex |
|
38 |
1 2 3 36 37
|
heiborlem2 |
|
39 |
38
|
simp2bi |
|
40 |
35 39
|
syl |
|
41 |
34 40
|
sseldd |
|
42 |
|
3re |
|
43 |
|
2nn |
|
44 |
|
nnexpcl |
|
45 |
43 21 44
|
sylancr |
|
46 |
45
|
nnrpd |
|
47 |
46
|
adantl |
|
48 |
|
rerpdivcl |
|
49 |
42 47 48
|
sylancr |
|
50 |
|
nnexpcl |
|
51 |
43 50
|
mpan |
|
52 |
51
|
nnrpd |
|
53 |
52
|
adantl |
|
54 |
|
rerpdivcl |
|
55 |
42 53 54
|
sylancr |
|
56 |
|
oveq1 |
|
57 |
|
oveq2 |
|
58 |
57
|
oveq2d |
|
59 |
58
|
oveq2d |
|
60 |
|
ovex |
|
61 |
56 59 4 60
|
ovmpo |
|
62 |
41 61
|
sylancom |
|
63 |
|
df-br |
|
64 |
|
fveq2 |
|
65 |
|
df-ov |
|
66 |
64 65
|
eqtr4di |
|
67 |
36 37
|
op2ndd |
|
68 |
67
|
oveq1d |
|
69 |
66 68
|
breq12d |
|
70 |
|
fveq2 |
|
71 |
|
df-ov |
|
72 |
70 71
|
eqtr4di |
|
73 |
66 68
|
oveq12d |
|
74 |
72 73
|
ineq12d |
|
75 |
74
|
eleq1d |
|
76 |
69 75
|
anbi12d |
|
77 |
76
|
rspccv |
|
78 |
8 77
|
syl |
|
79 |
63 78
|
syl5bi |
|
80 |
79
|
adantr |
|
81 |
35 80
|
mpd |
|
82 |
81
|
simpld |
|
83 |
|
ovex |
|
84 |
1 2 3 83 28
|
heiborlem2 |
|
85 |
84
|
simp2bi |
|
86 |
82 85
|
syl |
|
87 |
24 86
|
sseldd |
|
88 |
21
|
adantl |
|
89 |
|
oveq1 |
|
90 |
|
oveq2 |
|
91 |
90
|
oveq2d |
|
92 |
91
|
oveq2d |
|
93 |
|
ovex |
|
94 |
89 92 4 93
|
ovmpo |
|
95 |
87 88 94
|
syl2anc |
|
96 |
62 95
|
ineq12d |
|
97 |
81
|
simprd |
|
98 |
|
0elpw |
|
99 |
|
0fin |
|
100 |
|
elin |
|
101 |
98 99 100
|
mpbir2an |
|
102 |
|
0ss |
|
103 |
|
unieq |
|
104 |
103
|
sseq2d |
|
105 |
104
|
rspcev |
|
106 |
101 102 105
|
mp2an |
|
107 |
|
0ex |
|
108 |
|
sseq1 |
|
109 |
108
|
rexbidv |
|
110 |
109
|
notbid |
|
111 |
107 110 2
|
elab2 |
|
112 |
111
|
con2bii |
|
113 |
106 112
|
mpbi |
|
114 |
|
nelne2 |
|
115 |
97 113 114
|
sylancl |
|
116 |
96 115
|
eqnetrrd |
|
117 |
52
|
rpreccld |
|
118 |
117
|
adantl |
|
119 |
118
|
rpred |
|
120 |
46
|
rpreccld |
|
121 |
120
|
adantl |
|
122 |
121
|
rpred |
|
123 |
|
rexadd |
|
124 |
119 122 123
|
syl2anc |
|
125 |
124
|
breq1d |
|
126 |
118
|
rpxrd |
|
127 |
121
|
rpxrd |
|
128 |
|
bldisj |
|
129 |
128
|
3exp2 |
|
130 |
129
|
imp32 |
|
131 |
17 41 87 126 127 130
|
syl32anc |
|
132 |
125 131
|
sylbird |
|
133 |
132
|
necon3ad |
|
134 |
116 133
|
mpd |
|
135 |
118 121
|
rpaddcld |
|
136 |
135
|
rpred |
|
137 |
14
|
adantr |
|
138 |
|
metcl |
|
139 |
137 41 87 138
|
syl3anc |
|
140 |
136 139
|
letrid |
|
141 |
140
|
ord |
|
142 |
134 141
|
mpd |
|
143 |
|
seqp1 |
|
144 |
|
nn0uz |
|
145 |
143 144
|
eleq2s |
|
146 |
10
|
fveq1i |
|
147 |
10
|
fveq1i |
|
148 |
147
|
oveq1i |
|
149 |
145 146 148
|
3eqtr4g |
|
150 |
|
eqid |
|
151 |
|
eqeq1 |
|
152 |
|
oveq1 |
|
153 |
151 152
|
ifbieq2d |
|
154 |
|
nn0p1nn |
|
155 |
|
nnne0 |
|
156 |
155
|
neneqd |
|
157 |
154 156
|
syl |
|
158 |
157
|
iffalsed |
|
159 |
|
ovex |
|
160 |
158 159
|
eqeltrdi |
|
161 |
150 153 21 160
|
fvmptd3 |
|
162 |
|
nn0cn |
|
163 |
|
ax-1cn |
|
164 |
|
pncan |
|
165 |
162 163 164
|
sylancl |
|
166 |
161 158 165
|
3eqtrd |
|
167 |
166
|
oveq2d |
|
168 |
149 167
|
eqtrd |
|
169 |
168
|
adantl |
|
170 |
169
|
oveq1d |
|
171 |
|
metsym |
|
172 |
137 87 41 171
|
syl3anc |
|
173 |
170 172
|
eqtrd |
|
174 |
|
3cn |
|
175 |
174
|
2timesi |
|
176 |
175
|
oveq1i |
|
177 |
174 174
|
pncan3oi |
|
178 |
|
df-3 |
|
179 |
176 177 178
|
3eqtri |
|
180 |
179
|
oveq1i |
|
181 |
|
rpcn |
|
182 |
|
rpne0 |
|
183 |
|
2cn |
|
184 |
183 174
|
mulcli |
|
185 |
|
divsubdir |
|
186 |
184 174 185
|
mp3an12 |
|
187 |
181 182 186
|
syl2anc |
|
188 |
46 187
|
syl |
|
189 |
|
divdir |
|
190 |
183 163 189
|
mp3an12 |
|
191 |
181 182 190
|
syl2anc |
|
192 |
46 191
|
syl |
|
193 |
180 188 192
|
3eqtr3a |
|
194 |
|
rpcn |
|
195 |
|
rpne0 |
|
196 |
|
2cnne0 |
|
197 |
|
divcan5 |
|
198 |
174 196 197
|
mp3an13 |
|
199 |
194 195 198
|
syl2anc |
|
200 |
52 199
|
syl |
|
201 |
52 194
|
syl |
|
202 |
|
mulcom |
|
203 |
183 201 202
|
sylancr |
|
204 |
|
expp1 |
|
205 |
183 204
|
mpan |
|
206 |
203 205
|
eqtr4d |
|
207 |
206
|
oveq2d |
|
208 |
200 207
|
eqtr3d |
|
209 |
208
|
oveq1d |
|
210 |
|
divcan5 |
|
211 |
163 196 210
|
mp3an13 |
|
212 |
194 195 211
|
syl2anc |
|
213 |
52 212
|
syl |
|
214 |
|
2t1e2 |
|
215 |
214
|
a1i |
|
216 |
215 206
|
oveq12d |
|
217 |
213 216
|
eqtr3d |
|
218 |
217
|
oveq1d |
|
219 |
193 209 218
|
3eqtr4d |
|
220 |
219
|
adantl |
|
221 |
142 173 220
|
3brtr4d |
|
222 |
|
blss2 |
|
223 |
17 32 41 49 55 221 222
|
syl33anc |
|
224 |
12 223
|
sylan2 |
|
225 |
|
peano2nn |
|
226 |
|
fveq2 |
|
227 |
|
oveq2 |
|
228 |
227
|
oveq2d |
|
229 |
226 228
|
opeq12d |
|
230 |
|
opex |
|
231 |
229 11 230
|
fvmpt |
|
232 |
225 231
|
syl |
|
233 |
232
|
adantl |
|
234 |
233
|
fveq2d |
|
235 |
|
df-ov |
|
236 |
234 235
|
eqtr4di |
|
237 |
|
fveq2 |
|
238 |
|
oveq2 |
|
239 |
238
|
oveq2d |
|
240 |
237 239
|
opeq12d |
|
241 |
|
opex |
|
242 |
240 11 241
|
fvmpt |
|
243 |
242
|
fveq2d |
|
244 |
|
df-ov |
|
245 |
243 244
|
eqtr4di |
|
246 |
245
|
adantl |
|
247 |
224 236 246
|
3sstr4d |
|
248 |
247
|
ralrimiva |
|