Step |
Hyp |
Ref |
Expression |
1 |
|
heibor.1 |
|
2 |
|
heibor.3 |
|
3 |
|
heibor.4 |
|
4 |
|
heibor.5 |
|
5 |
|
heibor.6 |
|
6 |
|
heibor.7 |
|
7 |
|
heibor.8 |
|
8 |
|
heibor.9 |
|
9 |
|
heibor.10 |
|
10 |
|
heibor.11 |
|
11 |
|
heibor.12 |
|
12 |
|
3re |
|
13 |
|
3pos |
|
14 |
12 13
|
elrpii |
|
15 |
|
rpdivcl |
|
16 |
14 15
|
mpan2 |
|
17 |
|
2re |
|
18 |
|
1lt2 |
|
19 |
|
expnlbnd |
|
20 |
17 18 19
|
mp3an23 |
|
21 |
16 20
|
syl |
|
22 |
|
2nn |
|
23 |
|
nnnn0 |
|
24 |
|
nnexpcl |
|
25 |
22 23 24
|
sylancr |
|
26 |
25
|
nnrpd |
|
27 |
|
rpcn |
|
28 |
|
rpne0 |
|
29 |
|
3cn |
|
30 |
|
divrec |
|
31 |
29 30
|
mp3an1 |
|
32 |
27 28 31
|
syl2anc |
|
33 |
26 32
|
syl |
|
34 |
33
|
adantl |
|
35 |
34
|
breq1d |
|
36 |
25
|
nnrecred |
|
37 |
|
rpre |
|
38 |
12 13
|
pm3.2i |
|
39 |
|
ltmuldiv2 |
|
40 |
38 39
|
mp3an3 |
|
41 |
36 37 40
|
syl2anr |
|
42 |
35 41
|
bitrd |
|
43 |
42
|
rexbidva |
|
44 |
21 43
|
mpbird |
|
45 |
|
fveq2 |
|
46 |
|
oveq2 |
|
47 |
46
|
oveq2d |
|
48 |
45 47
|
opeq12d |
|
49 |
|
opex |
|
50 |
48 11 49
|
fvmpt |
|
51 |
50
|
fveq2d |
|
52 |
|
fvex |
|
53 |
|
ovex |
|
54 |
52 53
|
op2nd |
|
55 |
51 54
|
eqtrdi |
|
56 |
55
|
breq1d |
|
57 |
56
|
rexbiia |
|
58 |
44 57
|
sylibr |
|
59 |
58
|
rgen |
|