| Step |
Hyp |
Ref |
Expression |
| 1 |
|
heibor.1 |
|
| 2 |
|
heibor.3 |
|
| 3 |
|
heibor.4 |
|
| 4 |
|
heibor.5 |
|
| 5 |
|
heibor.6 |
|
| 6 |
|
heibor.7 |
|
| 7 |
|
heibor.8 |
|
| 8 |
|
heibor.9 |
|
| 9 |
|
heibor.10 |
|
| 10 |
|
heibor.11 |
|
| 11 |
|
heibor.12 |
|
| 12 |
|
3re |
|
| 13 |
|
3pos |
|
| 14 |
12 13
|
elrpii |
|
| 15 |
|
rpdivcl |
|
| 16 |
14 15
|
mpan2 |
|
| 17 |
|
2re |
|
| 18 |
|
1lt2 |
|
| 19 |
|
expnlbnd |
|
| 20 |
17 18 19
|
mp3an23 |
|
| 21 |
16 20
|
syl |
|
| 22 |
|
2nn |
|
| 23 |
|
nnnn0 |
|
| 24 |
|
nnexpcl |
|
| 25 |
22 23 24
|
sylancr |
|
| 26 |
25
|
nnrpd |
|
| 27 |
|
rpcn |
|
| 28 |
|
rpne0 |
|
| 29 |
|
3cn |
|
| 30 |
|
divrec |
|
| 31 |
29 30
|
mp3an1 |
|
| 32 |
27 28 31
|
syl2anc |
|
| 33 |
26 32
|
syl |
|
| 34 |
33
|
adantl |
|
| 35 |
34
|
breq1d |
|
| 36 |
25
|
nnrecred |
|
| 37 |
|
rpre |
|
| 38 |
12 13
|
pm3.2i |
|
| 39 |
|
ltmuldiv2 |
|
| 40 |
38 39
|
mp3an3 |
|
| 41 |
36 37 40
|
syl2anr |
|
| 42 |
35 41
|
bitrd |
|
| 43 |
42
|
rexbidva |
|
| 44 |
21 43
|
mpbird |
|
| 45 |
|
fveq2 |
|
| 46 |
|
oveq2 |
|
| 47 |
46
|
oveq2d |
|
| 48 |
45 47
|
opeq12d |
|
| 49 |
|
opex |
|
| 50 |
48 11 49
|
fvmpt |
|
| 51 |
50
|
fveq2d |
|
| 52 |
|
fvex |
|
| 53 |
|
ovex |
|
| 54 |
52 53
|
op2nd |
|
| 55 |
51 54
|
eqtrdi |
|
| 56 |
55
|
breq1d |
|
| 57 |
56
|
rexbiia |
|
| 58 |
44 57
|
sylibr |
|
| 59 |
58
|
rgen |
|