| Step |
Hyp |
Ref |
Expression |
| 1 |
|
heibor.1 |
|
| 2 |
|
heibor.3 |
|
| 3 |
|
heibor.4 |
|
| 4 |
|
heibor.5 |
|
| 5 |
|
heibor.6 |
|
| 6 |
|
heibor.7 |
|
| 7 |
|
heibor.8 |
|
| 8 |
|
heibor.9 |
|
| 9 |
|
heibor.10 |
|
| 10 |
|
heibor.11 |
|
| 11 |
|
heibor.12 |
|
| 12 |
|
heibor.13 |
|
| 13 |
|
heibor.14 |
|
| 14 |
|
heibor.15 |
|
| 15 |
|
heibor.16 |
|
| 16 |
|
heibor.17 |
|
| 17 |
|
cmetmet |
|
| 18 |
|
metxmet |
|
| 19 |
5 17 18
|
3syl |
|
| 20 |
12 15
|
sseldd |
|
| 21 |
1
|
mopni2 |
|
| 22 |
19 20 14 21
|
syl3anc |
|
| 23 |
|
rphalfcl |
|
| 24 |
|
breq2 |
|
| 25 |
24
|
rexbidv |
|
| 26 |
1 2 3 4 5 6 7 8 9 10 11
|
heiborlem7 |
|
| 27 |
25 26
|
vtoclri |
|
| 28 |
23 27
|
syl |
|
| 29 |
28
|
adantl |
|
| 30 |
|
nnnn0 |
|
| 31 |
1 2 3 4 5 6 7 8 9 10
|
heiborlem4 |
|
| 32 |
|
fvex |
|
| 33 |
|
vex |
|
| 34 |
1 2 3 32 33
|
heiborlem2 |
|
| 35 |
34
|
simp3bi |
|
| 36 |
31 35
|
syl |
|
| 37 |
30 36
|
sylan2 |
|
| 38 |
37
|
ad2ant2r |
|
| 39 |
19
|
ad2antrr |
|
| 40 |
1 2 3 4 5 6 7 8 9 10 11
|
heiborlem5 |
|
| 41 |
40
|
ffvelcdmda |
|
| 42 |
41
|
ad2ant2r |
|
| 43 |
|
xp1st |
|
| 44 |
42 43
|
syl |
|
| 45 |
|
2nn |
|
| 46 |
|
nnexpcl |
|
| 47 |
45 30 46
|
sylancr |
|
| 48 |
47
|
nnrpd |
|
| 49 |
48
|
rpreccld |
|
| 50 |
49
|
ad2antrl |
|
| 51 |
50
|
rpxrd |
|
| 52 |
|
xp2nd |
|
| 53 |
42 52
|
syl |
|
| 54 |
53
|
rpxrd |
|
| 55 |
|
1le3 |
|
| 56 |
|
elrp |
|
| 57 |
|
1re |
|
| 58 |
|
3re |
|
| 59 |
|
lediv1 |
|
| 60 |
57 58 59
|
mp3an12 |
|
| 61 |
56 60
|
sylbi |
|
| 62 |
55 61
|
mpbii |
|
| 63 |
48 62
|
syl |
|
| 64 |
63
|
ad2antrl |
|
| 65 |
|
fveq2 |
|
| 66 |
|
oveq2 |
|
| 67 |
66
|
oveq2d |
|
| 68 |
65 67
|
opeq12d |
|
| 69 |
|
opex |
|
| 70 |
68 11 69
|
fvmpt |
|
| 71 |
70
|
fveq2d |
|
| 72 |
|
ovex |
|
| 73 |
32 72
|
op2nd |
|
| 74 |
71 73
|
eqtrdi |
|
| 75 |
74
|
ad2antrl |
|
| 76 |
64 75
|
breqtrrd |
|
| 77 |
|
ssbl |
|
| 78 |
39 44 51 54 76 77
|
syl221anc |
|
| 79 |
30
|
ad2antrl |
|
| 80 |
|
oveq1 |
|
| 81 |
|
oveq2 |
|
| 82 |
81
|
oveq2d |
|
| 83 |
82
|
oveq2d |
|
| 84 |
|
ovex |
|
| 85 |
80 83 4 84
|
ovmpo |
|
| 86 |
44 79 85
|
syl2anc |
|
| 87 |
70
|
fveq2d |
|
| 88 |
32 72
|
op1st |
|
| 89 |
87 88
|
eqtrdi |
|
| 90 |
89
|
ad2antrl |
|
| 91 |
90
|
oveq1d |
|
| 92 |
86 91
|
eqtr3d |
|
| 93 |
|
df-ov |
|
| 94 |
|
1st2nd2 |
|
| 95 |
42 94
|
syl |
|
| 96 |
95
|
fveq2d |
|
| 97 |
93 96
|
eqtr4id |
|
| 98 |
78 92 97
|
3sstr3d |
|
| 99 |
1
|
mopntop |
|
| 100 |
39 99
|
syl |
|
| 101 |
|
blssm |
|
| 102 |
39 44 54 101
|
syl3anc |
|
| 103 |
1
|
mopnuni |
|
| 104 |
39 103
|
syl |
|
| 105 |
102 97 104
|
3sstr3d |
|
| 106 |
|
eqid |
|
| 107 |
106
|
sscls |
|
| 108 |
100 105 107
|
syl2anc |
|
| 109 |
97
|
fveq2d |
|
| 110 |
23
|
ad2antlr |
|
| 111 |
110
|
rpxrd |
|
| 112 |
|
simprr |
|
| 113 |
1
|
blsscls |
|
| 114 |
39 44 54 111 112 113
|
syl23anc |
|
| 115 |
109 114
|
eqsstrrd |
|
| 116 |
|
rpre |
|
| 117 |
116
|
ad2antlr |
|
| 118 |
1 2 3 4 5 6 7 8 9 10 11
|
heiborlem6 |
|
| 119 |
19 40 118 1
|
caublcls |
|
| 120 |
119
|
3expia |
|
| 121 |
16 120
|
mpdan |
|
| 122 |
121
|
imp |
|
| 123 |
122
|
ad2ant2r |
|
| 124 |
115 123
|
sseldd |
|
| 125 |
|
blhalf |
|
| 126 |
39 44 117 124 125
|
syl22anc |
|
| 127 |
115 126
|
sstrd |
|
| 128 |
108 127
|
sstrd |
|
| 129 |
98 128
|
sstrd |
|
| 130 |
|
sstr2 |
|
| 131 |
129 130
|
syl |
|
| 132 |
|
unisng |
|
| 133 |
15 132
|
syl |
|
| 134 |
133
|
sseq2d |
|
| 135 |
134
|
biimpar |
|
| 136 |
15
|
snssd |
|
| 137 |
|
snex |
|
| 138 |
137
|
elpw |
|
| 139 |
136 138
|
sylibr |
|
| 140 |
|
snfi |
|
| 141 |
140
|
a1i |
|
| 142 |
139 141
|
elind |
|
| 143 |
|
unieq |
|
| 144 |
143
|
sseq2d |
|
| 145 |
144
|
rspcev |
|
| 146 |
142 145
|
sylan |
|
| 147 |
135 146
|
syldan |
|
| 148 |
|
ovex |
|
| 149 |
|
sseq1 |
|
| 150 |
149
|
rexbidv |
|
| 151 |
150
|
notbid |
|
| 152 |
148 151 2
|
elab2 |
|
| 153 |
152
|
con2bii |
|
| 154 |
147 153
|
sylib |
|
| 155 |
154
|
ex |
|
| 156 |
155
|
ad2antrr |
|
| 157 |
131 156
|
syld |
|
| 158 |
38 157
|
mt2d |
|
| 159 |
29 158
|
rexlimddv |
|
| 160 |
159
|
nrexdv |
|
| 161 |
22 160
|
pm2.21dd |
|