Metamath Proof Explorer


Theorem helch

Description: The unit Hilbert lattice element (which is all of Hilbert space) belongs to the Hilbert lattice. Part of Proposition 1 of Kalmbach p. 65. (Contributed by NM, 6-Sep-1999) (New usage is discouraged.)

Ref Expression
Assertion helch C

Proof

Step Hyp Ref Expression
1 ssid
2 ax-hv0cl 0
3 1 2 pm3.2i 0
4 hvaddcl x y x + y
5 4 rgen2 x y x + y
6 hvmulcl x y x y
7 6 rgen2 x y x y
8 5 7 pm3.2i x y x + y x y x y
9 issh2 S 0 x y x + y x y x y
10 3 8 9 mpbir2an S
11 vex x V
12 11 hlimveci f v x x
13 12 adantl f : f v x x
14 13 gen2 f x f : f v x x
15 isch2 C S f x f : f v x x
16 10 14 15 mpbir2an C