Metamath Proof Explorer


Theorem hfsmval

Description: Value of the sum of two Hilbert space functionals. (Contributed by NM, 23-May-2006) (Revised by Mario Carneiro, 23-Aug-2014) (New usage is discouraged.)

Ref Expression
Assertion hfsmval S : T : S + fn T = x S x + T x

Proof

Step Hyp Ref Expression
1 cnex V
2 ax-hilex V
3 1 2 elmap S S :
4 1 2 elmap T T :
5 fveq1 f = S f x = S x
6 5 oveq1d f = S f x + g x = S x + g x
7 6 mpteq2dv f = S x f x + g x = x S x + g x
8 fveq1 g = T g x = T x
9 8 oveq2d g = T S x + g x = S x + T x
10 9 mpteq2dv g = T x S x + g x = x S x + T x
11 df-hfsum + fn = f , g x f x + g x
12 2 mptex x S x + T x V
13 7 10 11 12 ovmpo S T S + fn T = x S x + T x
14 3 4 13 syl2anbr S : T : S + fn T = x S x + T x