Metamath Proof Explorer


Theorem hgmaprnlem1N

Description: Lemma for hgmaprnN . (Contributed by NM, 7-Jun-2015) (New usage is discouraged.)

Ref Expression
Hypotheses hgmaprnlem1.h H = LHyp K
hgmaprnlem1.u U = DVecH K W
hgmaprnlem1.v V = Base U
hgmaprnlem1.r R = Scalar U
hgmaprnlem1.b B = Base R
hgmaprnlem1.t · ˙ = U
hgmaprnlem1.o 0 ˙ = 0 U
hgmaprnlem1.c C = LCDual K W
hgmaprnlem1.d D = Base C
hgmaprnlem1.p P = Scalar C
hgmaprnlem1.a A = Base P
hgmaprnlem1.e ˙ = C
hgmaprnlem1.q Q = 0 C
hgmaprnlem1.s S = HDMap K W
hgmaprnlem1.g G = HGMap K W
hgmaprnlem1.k φ K HL W H
hgmaprnlem1.z φ z A
hgmaprnlem1.t2 φ t V 0 ˙
hgmaprnlem1.s2 φ s V
hgmaprnlem1.sz φ S s = z ˙ S t
hgmaprnlem1.k2 φ k B
hgmaprnlem1.sk φ s = k · ˙ t
Assertion hgmaprnlem1N φ z ran G

Proof

Step Hyp Ref Expression
1 hgmaprnlem1.h H = LHyp K
2 hgmaprnlem1.u U = DVecH K W
3 hgmaprnlem1.v V = Base U
4 hgmaprnlem1.r R = Scalar U
5 hgmaprnlem1.b B = Base R
6 hgmaprnlem1.t · ˙ = U
7 hgmaprnlem1.o 0 ˙ = 0 U
8 hgmaprnlem1.c C = LCDual K W
9 hgmaprnlem1.d D = Base C
10 hgmaprnlem1.p P = Scalar C
11 hgmaprnlem1.a A = Base P
12 hgmaprnlem1.e ˙ = C
13 hgmaprnlem1.q Q = 0 C
14 hgmaprnlem1.s S = HDMap K W
15 hgmaprnlem1.g G = HGMap K W
16 hgmaprnlem1.k φ K HL W H
17 hgmaprnlem1.z φ z A
18 hgmaprnlem1.t2 φ t V 0 ˙
19 hgmaprnlem1.s2 φ s V
20 hgmaprnlem1.sz φ S s = z ˙ S t
21 hgmaprnlem1.k2 φ k B
22 hgmaprnlem1.sk φ s = k · ˙ t
23 22 fveq2d φ S s = S k · ˙ t
24 18 eldifad φ t V
25 1 2 3 6 4 5 8 12 14 15 16 24 21 hgmapvs φ S k · ˙ t = G k ˙ S t
26 23 20 25 3eqtr3d φ z ˙ S t = G k ˙ S t
27 1 8 16 lcdlvec φ C LVec
28 1 2 4 5 8 10 11 15 16 21 hgmapdcl φ G k A
29 1 2 3 8 9 14 16 24 hdmapcl φ S t D
30 eldifsni t V 0 ˙ t 0 ˙
31 18 30 syl φ t 0 ˙
32 1 2 3 7 8 13 14 16 24 hdmapeq0 φ S t = Q t = 0 ˙
33 32 necon3bid φ S t Q t 0 ˙
34 31 33 mpbird φ S t Q
35 9 12 10 11 13 27 17 28 29 34 lvecvscan2 φ z ˙ S t = G k ˙ S t z = G k
36 26 35 mpbid φ z = G k
37 1 2 4 5 15 16 hgmapfnN φ G Fn B
38 fnfvelrn G Fn B k B G k ran G
39 37 21 38 syl2anc φ G k ran G
40 36 39 eqeltrd φ z ran G