Metamath Proof Explorer


Theorem hgt749d

Description: A deduction version of ax-hgt749 . (Contributed by Thierry Arnoux, 15-Dec-2021)

Ref Expression
Hypotheses hgt749d.o O = z | ¬ 2 z
hgt749d.n φ N O
hgt749d.1 φ 10 27 N
Assertion hgt749d φ h 0 +∞ k 0 +∞ m k m 1.079955 m h m 1.414 0.00042248 N 2 0 1 Λ × f h vts N x Λ × f k vts N x 2 e i 2 π -N x dx

Proof

Step Hyp Ref Expression
1 hgt749d.o O = z | ¬ 2 z
2 hgt749d.n φ N O
3 hgt749d.1 φ 10 27 N
4 breq2 n = N 10 27 n 10 27 N
5 oveq1 n = N n 2 = N 2
6 5 oveq2d n = N 0.00042248 n 2 = 0.00042248 N 2
7 oveq2 n = N Λ × f h vts n = Λ × f h vts N
8 7 fveq1d n = N Λ × f h vts n x = Λ × f h vts N x
9 oveq2 n = N Λ × f k vts n = Λ × f k vts N
10 9 fveq1d n = N Λ × f k vts n x = Λ × f k vts N x
11 10 oveq1d n = N Λ × f k vts n x 2 = Λ × f k vts N x 2
12 8 11 oveq12d n = N Λ × f h vts n x Λ × f k vts n x 2 = Λ × f h vts N x Λ × f k vts N x 2
13 negeq n = N n = N
14 13 oveq1d n = N n x = -N x
15 14 oveq2d n = N i 2 π n x = i 2 π -N x
16 15 fveq2d n = N e i 2 π n x = e i 2 π -N x
17 12 16 oveq12d n = N Λ × f h vts n x Λ × f k vts n x 2 e i 2 π n x = Λ × f h vts N x Λ × f k vts N x 2 e i 2 π -N x
18 17 adantr n = N x 0 1 Λ × f h vts n x Λ × f k vts n x 2 e i 2 π n x = Λ × f h vts N x Λ × f k vts N x 2 e i 2 π -N x
19 18 itgeq2dv n = N 0 1 Λ × f h vts n x Λ × f k vts n x 2 e i 2 π n x dx = 0 1 Λ × f h vts N x Λ × f k vts N x 2 e i 2 π -N x dx
20 6 19 breq12d n = N 0.00042248 n 2 0 1 Λ × f h vts n x Λ × f k vts n x 2 e i 2 π n x dx 0.00042248 N 2 0 1 Λ × f h vts N x Λ × f k vts N x 2 e i 2 π -N x dx
21 20 3anbi3d n = N m k m 1.079955 m h m 1.414 0.00042248 n 2 0 1 Λ × f h vts n x Λ × f k vts n x 2 e i 2 π n x dx m k m 1.079955 m h m 1.414 0.00042248 N 2 0 1 Λ × f h vts N x Λ × f k vts N x 2 e i 2 π -N x dx
22 21 rexbidv n = N k 0 +∞ m k m 1.079955 m h m 1.414 0.00042248 n 2 0 1 Λ × f h vts n x Λ × f k vts n x 2 e i 2 π n x dx k 0 +∞ m k m 1.079955 m h m 1.414 0.00042248 N 2 0 1 Λ × f h vts N x Λ × f k vts N x 2 e i 2 π -N x dx
23 22 rexbidv n = N h 0 +∞ k 0 +∞ m k m 1.079955 m h m 1.414 0.00042248 n 2 0 1 Λ × f h vts n x Λ × f k vts n x 2 e i 2 π n x dx h 0 +∞ k 0 +∞ m k m 1.079955 m h m 1.414 0.00042248 N 2 0 1 Λ × f h vts N x Λ × f k vts N x 2 e i 2 π -N x dx
24 4 23 imbi12d n = N 10 27 n h 0 +∞ k 0 +∞ m k m 1.079955 m h m 1.414 0.00042248 n 2 0 1 Λ × f h vts n x Λ × f k vts n x 2 e i 2 π n x dx 10 27 N h 0 +∞ k 0 +∞ m k m 1.079955 m h m 1.414 0.00042248 N 2 0 1 Λ × f h vts N x Λ × f k vts N x 2 e i 2 π -N x dx
25 ax-hgt749 n z | ¬ 2 z 10 27 n h 0 +∞ k 0 +∞ m k m 1.079955 m h m 1.414 0.00042248 n 2 0 1 Λ × f h vts n x Λ × f k vts n x 2 e i 2 π n x dx
26 25 a1i φ n z | ¬ 2 z 10 27 n h 0 +∞ k 0 +∞ m k m 1.079955 m h m 1.414 0.00042248 n 2 0 1 Λ × f h vts n x Λ × f k vts n x 2 e i 2 π n x dx
27 2 1 eleqtrdi φ N z | ¬ 2 z
28 24 26 27 rspcdva φ 10 27 N h 0 +∞ k 0 +∞ m k m 1.079955 m h m 1.414 0.00042248 N 2 0 1 Λ × f h vts N x Λ × f k vts N x 2 e i 2 π -N x dx
29 3 28 mpd φ h 0 +∞ k 0 +∞ m k m 1.079955 m h m 1.414 0.00042248 N 2 0 1 Λ × f h vts N x Λ × f k vts N x 2 e i 2 π -N x dx