Metamath Proof Explorer


Theorem hgt750lem

Description: Lemma for tgoldbachgtd . (Contributed by Thierry Arnoux, 17-Dec-2021)

Ref Expression
Assertion hgt750lem N 0 10 27 N 7.348 log N N < 0.00042248

Proof

Step Hyp Ref Expression
1 7nn0 7 0
2 3re 3
3 4re 4
4 8re 8
5 3 4 pm3.2i 4 8
6 dp2cl 4 8 48
7 5 6 ax-mp 48
8 2 7 pm3.2i 3 48
9 dp2cl 3 48 348
10 8 9 ax-mp 348
11 dpcl 7 0 348 7.348
12 1 10 11 mp2an 7.348
13 12 a1i N 0 10 27 N 7.348
14 nn0re N 0 N
15 14 adantr N 0 10 27 N N
16 0re 0
17 16 a1i N 0 10 27 N 0
18 10re 10
19 2nn0 2 0
20 19 1 deccl 27 0
21 reexpcl 10 27 0 10 27
22 18 20 21 mp2an 10 27
23 22 a1i N 0 10 27 N 10 27
24 0lt1 0 < 1
25 1nn 1
26 0nn0 0 0
27 1nn0 1 0
28 1re 1
29 9re 9
30 1lt9 1 < 9
31 28 29 30 ltleii 1 9
32 25 26 27 31 declei 1 10
33 expge1 10 27 0 1 10 1 10 27
34 18 20 32 33 mp3an 1 10 27
35 16 28 22 ltletri 0 < 1 1 10 27 0 < 10 27
36 24 34 35 mp2an 0 < 10 27
37 36 a1i N 0 10 27 N 0 < 10 27
38 simpr N 0 10 27 N 10 27 N
39 17 23 15 37 38 ltletrd N 0 10 27 N 0 < N
40 15 39 elrpd N 0 10 27 N N +
41 40 relogcld N 0 10 27 N log N
42 40 rpge0d N 0 10 27 N 0 N
43 15 42 resqrtcld N 0 10 27 N N
44 40 sqrtgt0d N 0 10 27 N 0 < N
45 17 44 gtned N 0 10 27 N N 0
46 41 43 45 redivcld N 0 10 27 N log N N
47 13 46 remulcld N 0 10 27 N 7.348 log N N
48 elrp 10 27 + 10 27 0 < 10 27
49 22 36 48 mpbir2an 10 27 +
50 relogcl 10 27 + log 10 27
51 49 50 ax-mp log 10 27
52 22 36 sqrtpclii 10 27
53 22 36 sqrtgt0ii 0 < 10 27
54 16 53 gtneii 10 27 0
55 51 52 54 redivcli log 10 27 10 27
56 55 a1i N 0 10 27 N log 10 27 10 27
57 13 56 remulcld N 0 10 27 N 7.348 log 10 27 10 27
58 qssre
59 4nn0 4 0
60 nn0ssq 0
61 8nn0 8 0
62 60 61 sselii 8
63 59 62 dp2clq 48
64 19 63 dp2clq 248
65 19 64 dp2clq 2248
66 59 65 dp2clq 42248
67 26 66 dp2clq 042248
68 26 67 dp2clq 0042248
69 26 68 dp2clq 00042248
70 58 69 sselii 00042248
71 dpcl 0 0 00042248 0.00042248
72 26 70 71 mp2an 0.00042248
73 72 a1i N 0 10 27 N 0.00042248
74 3nn0 3 0
75 8pos 0 < 8
76 elrp 8 + 8 0 < 8
77 4 75 76 mpbir2an 8 +
78 59 77 rpdp2cl 48 +
79 74 78 rpdp2cl 348 +
80 1 79 rpdpcl 7.348 +
81 elrp 7.348 + 7.348 0 < 7.348
82 80 81 mpbi 7.348 0 < 7.348
83 82 simpri 0 < 7.348
84 16 12 83 ltleii 0 7.348
85 84 a1i N 0 10 27 N 0 7.348
86 49 a1i N 0 10 27 N 10 27 +
87 2cn 2
88 87 mulid2i 1 2 = 2
89 2nn 2
90 89 1 27 31 declei 1 27
91 2pos 0 < 2
92 20 nn0rei 27
93 2re 2
94 28 92 93 lemul1i 0 < 2 1 27 1 2 27 2
95 91 94 ax-mp 1 27 1 2 27 2
96 90 95 mpbi 1 2 27 2
97 88 96 eqbrtrri 2 27 2
98 1p1e2 1 + 1 = 2
99 loge log e = 1
100 egt2lt3 2 < e e < 3
101 100 simpri e < 3
102 epr e +
103 3rp 3 +
104 logltb e + 3 + e < 3 log e < log 3
105 102 103 104 mp2an e < 3 log e < log 3
106 101 105 mpbi log e < log 3
107 99 106 eqbrtrri 1 < log 3
108 relogcl 3 + log 3
109 103 108 ax-mp log 3
110 28 28 109 109 lt2addi 1 < log 3 1 < log 3 1 + 1 < log 3 + log 3
111 107 107 110 mp2an 1 + 1 < log 3 + log 3
112 3cn 3
113 3ne0 3 0
114 logmul2 3 3 0 3 + log 3 3 = log 3 + log 3
115 112 113 103 114 mp3an log 3 3 = log 3 + log 3
116 3t3e9 3 3 = 9
117 116 fveq2i log 3 3 = log 9
118 9lt10 9 < 10
119 29 18 118 ltleii 9 10
120 9pos 0 < 9
121 elrp 9 + 9 0 < 9
122 29 120 121 mpbir2an 9 +
123 10pos 0 < 10
124 elrp 10 + 10 0 < 10
125 18 123 124 mpbir2an 10 +
126 logleb 9 + 10 + 9 10 log 9 log 10
127 122 125 126 mp2an 9 10 log 9 log 10
128 119 127 mpbi log 9 log 10
129 117 128 eqbrtri log 3 3 log 10
130 115 129 eqbrtrri log 3 + log 3 log 10
131 28 28 readdcli 1 + 1
132 109 109 readdcli log 3 + log 3
133 relogcl 10 + log 10
134 125 133 ax-mp log 10
135 131 132 134 ltletri 1 + 1 < log 3 + log 3 log 3 + log 3 log 10 1 + 1 < log 10
136 111 130 135 mp2an 1 + 1 < log 10
137 98 136 eqbrtrri 2 < log 10
138 93 134 ltlei 2 < log 10 2 log 10
139 137 138 ax-mp 2 log 10
140 16 29 120 ltleii 0 9
141 89 1 26 140 decltdi 0 < 27
142 93 134 92 lemul2i 0 < 27 2 log 10 27 2 27 log 10
143 141 142 ax-mp 2 log 10 27 2 27 log 10
144 139 143 mpbi 27 2 27 log 10
145 92 93 remulcli 27 2
146 20 nn0zi 27
147 relogexp 10 + 27 log 10 27 = 27 log 10
148 125 146 147 mp2an log 10 27 = 27 log 10
149 148 51 eqeltrri 27 log 10
150 93 145 149 letri 2 27 2 27 2 27 log 10 2 27 log 10
151 97 144 150 mp2an 2 27 log 10
152 relogef 2 log e 2 = 2
153 93 152 ax-mp log e 2 = 2
154 151 153 148 3brtr4i log e 2 log 10 27
155 rpefcl 2 e 2 +
156 93 155 ax-mp e 2 +
157 logleb e 2 + 10 27 + e 2 10 27 log e 2 log 10 27
158 156 49 157 mp2an e 2 10 27 log e 2 log 10 27
159 154 158 mpbir e 2 10 27
160 159 a1i N 0 10 27 N e 2 10 27
161 86 40 160 38 logdivsqrle N 0 10 27 N log N N log 10 27 10 27
162 46 56 13 85 161 lemul2ad N 0 10 27 N 7.348 log N N 7.348 log 10 27 10 27
163 3lt10 3 < 10
164 4lt10 4 < 10
165 8lt10 8 < 10
166 59 77 164 165 dp2lt10 48 < 10
167 74 78 163 166 dp2lt10 348 < 10
168 7p1e8 7 + 1 = 8
169 1 79 61 167 168 dplti 7.348 < 8
170 58 62 sselii 8
171 12 170 18 lttri 7.348 < 8 8 < 10 7.348 < 10
172 169 165 171 mp2an 7.348 < 10
173 27 26 deccl 10 0
174 173 numexp0 10 0 = 1
175 0z 0
176 18 175 146 3pm3.2i 10 0 27
177 1lt10 1 < 10
178 177 141 pm3.2i 1 < 10 0 < 27
179 ltexp2a 10 0 27 1 < 10 0 < 27 10 0 < 10 27
180 176 178 179 mp2an 10 0 < 10 27
181 174 180 eqbrtrri 1 < 10 27
182 loggt0b 10 27 + 0 < log 10 27 1 < 10 27
183 49 182 ax-mp 0 < log 10 27 1 < 10 27
184 181 183 mpbir 0 < log 10 27
185 51 52 divgt0i 0 < log 10 27 0 < 10 27 0 < log 10 27 10 27
186 184 53 185 mp2an 0 < log 10 27 10 27
187 12 18 55 ltmul1i 0 < log 10 27 10 27 7.348 < 10 7.348 log 10 27 10 27 < 10 log 10 27 10 27
188 186 187 ax-mp 7.348 < 10 7.348 log 10 27 10 27 < 10 log 10 27 10 27
189 172 188 mpbi 7.348 log 10 27 10 27 < 10 log 10 27 10 27
190 18 recni 10
191 expmul 10 7 0 2 0 10 7 2 = 10 7 2
192 190 1 19 191 mp3an 10 7 2 = 10 7 2
193 7t2e14 7 2 = 14
194 193 oveq2i 10 7 2 = 10 14
195 192 194 eqtr3i 10 7 2 = 10 14
196 195 fveq2i 10 7 2 = 10 14
197 reexpcl 10 7 0 10 7
198 18 1 197 mp2an 10 7
199 1 nn0zi 7
200 expgt0 10 7 0 < 10 0 < 10 7
201 18 199 123 200 mp3an 0 < 10 7
202 16 198 201 ltleii 0 10 7
203 sqrtsq 10 7 0 10 7 10 7 2 = 10 7
204 198 202 203 mp2an 10 7 2 = 10 7
205 196 204 eqtr3i 10 14 = 10 7
206 27 59 deccl 14 0
207 206 nn0zi 14
208 18 207 146 3pm3.2i 10 14 27
209 1lt2 1 < 2
210 27 19 59 1 164 209 decltc 14 < 27
211 177 210 pm3.2i 1 < 10 14 < 27
212 ltexp2a 10 14 27 1 < 10 14 < 27 10 14 < 10 27
213 208 211 212 mp2an 10 14 < 10 27
214 reexpcl 10 14 0 10 14
215 18 206 214 mp2an 10 14
216 expgt0 10 14 0 < 10 0 < 10 14
217 18 207 123 216 mp3an 0 < 10 14
218 16 215 217 ltleii 0 10 14
219 215 218 pm3.2i 10 14 0 10 14
220 16 22 36 ltleii 0 10 27
221 22 220 pm3.2i 10 27 0 10 27
222 sqrtlt 10 14 0 10 14 10 27 0 10 27 10 14 < 10 27 10 14 < 10 27
223 219 221 222 mp2an 10 14 < 10 27 10 14 < 10 27
224 213 223 mpbi 10 14 < 10 27
225 205 224 eqbrtrri 10 7 < 10 27
226 198 201 pm3.2i 10 7 0 < 10 7
227 52 53 pm3.2i 10 27 0 < 10 27
228 51 184 pm3.2i log 10 27 0 < log 10 27
229 ltdiv2 10 7 0 < 10 7 10 27 0 < 10 27 log 10 27 0 < log 10 27 10 7 < 10 27 log 10 27 10 27 < log 10 27 10 7
230 226 227 228 229 mp3an 10 7 < 10 27 log 10 27 10 27 < log 10 27 10 7
231 225 230 mpbi log 10 27 10 27 < log 10 27 10 7
232 6nn 6
233 232 nngt0i 0 < 6
234 27 26 232 233 declt 10 < 16
235 6nn0 6 0
236 27 235 deccl 16 0
237 236 nn0rei 16
238 25 235 26 123 declti 0 < 16
239 elrp 16 + 16 0 < 16
240 237 238 239 mpbir2an 16 +
241 logltb 10 + 16 + 10 < 16 log 10 < log 16
242 125 240 241 mp2an 10 < 16 log 10 < log 16
243 234 242 mpbi log 10 < log 16
244 2exp4 2 4 = 16
245 244 fveq2i log 2 4 = log 16
246 2rp 2 +
247 59 nn0zi 4
248 relogexp 2 + 4 log 2 4 = 4 log 2
249 246 247 248 mp2an log 2 4 = 4 log 2
250 245 249 eqtr3i log 16 = 4 log 2
251 243 250 breqtri log 10 < 4 log 2
252 100 simpli 2 < e
253 logltb 2 + e + 2 < e log 2 < log e
254 246 102 253 mp2an 2 < e log 2 < log e
255 252 254 mpbi log 2 < log e
256 255 99 breqtri log 2 < 1
257 4pos 0 < 4
258 relogcl 2 + log 2
259 246 258 ax-mp log 2
260 259 28 3 ltmul2i 0 < 4 log 2 < 1 4 log 2 < 4 1
261 257 260 ax-mp log 2 < 1 4 log 2 < 4 1
262 256 261 mpbi 4 log 2 < 4 1
263 4cn 4
264 263 mulid1i 4 1 = 4
265 262 264 breqtri 4 log 2 < 4
266 3 259 remulcli 4 log 2
267 134 266 3 lttri log 10 < 4 log 2 4 log 2 < 4 log 10 < 4
268 251 265 267 mp2an log 10 < 4
269 134 3 92 ltmul2i 0 < 27 log 10 < 4 27 log 10 < 27 4
270 141 269 ax-mp log 10 < 4 27 log 10 < 27 4
271 268 270 mpbi 27 log 10 < 27 4
272 148 271 eqbrtri log 10 27 < 27 4
273 92 3 remulcli 27 4
274 51 273 198 ltdiv1i 0 < 10 7 log 10 27 < 27 4 log 10 27 10 7 < 27 4 10 7
275 201 274 ax-mp log 10 27 < 27 4 log 10 27 10 7 < 27 4 10 7
276 272 275 mpbi log 10 27 10 7 < 27 4 10 7
277 16 201 gtneii 10 7 0
278 51 198 277 redivcli log 10 27 10 7
279 273 198 277 redivcli 27 4 10 7
280 55 278 279 lttri log 10 27 10 27 < log 10 27 10 7 log 10 27 10 7 < 27 4 10 7 log 10 27 10 27 < 27 4 10 7
281 231 276 280 mp2an log 10 27 10 27 < 27 4 10 7
282 7lt10 7 < 10
283 2lt10 2 < 10
284 19 173 1 26 282 283 decltc 27 < 100
285 10nn 10
286 285 decnncl2 100
287 286 nnrei 100
288 92 287 3 ltmul1i 0 < 4 27 < 100 27 4 < 100 4
289 257 288 ax-mp 27 < 100 27 4 < 100 4
290 284 289 mpbi 27 4 < 100 4
291 287 3 remulcli 100 4
292 273 291 198 ltdiv1i 0 < 10 7 27 4 < 100 4 27 4 10 7 < 100 4 10 7
293 201 292 ax-mp 27 4 < 100 4 27 4 10 7 < 100 4 10 7
294 290 293 mpbi 27 4 10 7 < 100 4 10 7
295 8nn 8
296 nnrp 8 8 +
297 295 296 ax-mp 8 +
298 59 297 rpdp2cl 48 +
299 19 298 rpdp2cl 248 +
300 19 299 rpdp2cl 2248 +
301 59 300 dpgti 4 < 4.2248
302 72 recni 0.00042248
303 198 recni 10 7
304 302 303 mulcli 0.00042248 10 7
305 16 123 gtneii 10 0
306 190 305 pm3.2i 10 10 0
307 287 recni 100
308 286 nnne0i 100 0
309 307 308 pm3.2i 100 100 0
310 divdiv1 0.00042248 10 7 10 10 0 100 100 0 0.00042248 10 7 10 100 = 0.00042248 10 7 10 100
311 304 306 309 310 mp3an 0.00042248 10 7 10 100 = 0.00042248 10 7 10 100
312 302 303 190 305 div23i 0.00042248 10 7 10 = 0.00042248 10 10 7
313 312 oveq1i 0.00042248 10 7 10 100 = 0.00042248 10 10 7 100
314 190 307 mulcli 10 100
315 190 307 305 308 mulne0i 10 100 0
316 302 303 314 315 divassi 0.00042248 10 7 10 100 = 0.00042248 10 7 10 100
317 expp1 10 2 0 10 2 + 1 = 10 2 10
318 190 19 317 mp2an 10 2 + 1 = 10 2 10
319 sq10 10 2 = 100
320 319 oveq1i 10 2 10 = 100 10
321 307 190 mulcomi 100 10 = 10 100
322 318 320 321 3eqtrri 10 100 = 10 2 + 1
323 2p1e3 2 + 1 = 3
324 323 oveq2i 10 2 + 1 = 10 3
325 322 324 eqtri 10 100 = 10 3
326 325 oveq2i 10 7 10 100 = 10 7 10 3
327 74 nn0zi 3
328 199 327 pm3.2i 7 3
329 expsub 10 10 0 7 3 10 7 3 = 10 7 10 3
330 306 328 329 mp2an 10 7 3 = 10 7 10 3
331 7cn 7
332 4p3e7 4 + 3 = 7
333 263 112 332 addcomli 3 + 4 = 7
334 331 112 263 333 subaddrii 7 3 = 4
335 334 oveq2i 10 7 3 = 10 4
336 326 330 335 3eqtr2i 10 7 10 100 = 10 4
337 336 oveq2i 0.00042248 10 7 10 100 = 0.00042248 10 4
338 173 numexp1 10 1 = 10
339 338 oveq2i 0.42248 10 1 = 0.42248 10
340 59 300 rpdp2cl 42248 +
341 25 nnzi 1
342 89 nnzi 2
343 26 340 98 341 342 dpexpp1 0.42248 10 1 = 0.042248 10 2
344 26 340 rpdp2cl 042248 +
345 26 344 323 342 327 dpexpp1 0.042248 10 2 = 0.0042248 10 3
346 26 344 rpdp2cl 0042248 +
347 3p1e4 3 + 1 = 4
348 26 346 347 327 247 dpexpp1 0.0042248 10 3 = 0.00042248 10 4
349 343 345 348 3eqtri 0.42248 10 1 = 0.00042248 10 4
350 59 300 0dp2dp 0.42248 10 = 4.2248
351 339 349 350 3eqtr3i 0.00042248 10 4 = 4.2248
352 316 337 351 3eqtri 0.00042248 10 7 10 100 = 4.2248
353 311 313 352 3eqtr3i 0.00042248 10 10 7 100 = 4.2248
354 301 353 breqtrri 4 < 0.00042248 10 10 7 100
355 72 18 305 redivcli 0.00042248 10
356 355 198 remulcli 0.00042248 10 10 7
357 286 nngt0i 0 < 100
358 287 357 pm3.2i 100 0 < 100
359 ltmuldiv2 4 0.00042248 10 10 7 100 0 < 100 100 4 < 0.00042248 10 10 7 4 < 0.00042248 10 10 7 100
360 3 356 358 359 mp3an 100 4 < 0.00042248 10 10 7 4 < 0.00042248 10 10 7 100
361 354 360 mpbir 100 4 < 0.00042248 10 10 7
362 ltdivmul2 100 4 0.00042248 10 10 7 0 < 10 7 100 4 10 7 < 0.00042248 10 100 4 < 0.00042248 10 10 7
363 291 355 226 362 mp3an 100 4 10 7 < 0.00042248 10 100 4 < 0.00042248 10 10 7
364 361 363 mpbir 100 4 10 7 < 0.00042248 10
365 291 198 277 redivcli 100 4 10 7
366 279 365 355 lttri 27 4 10 7 < 100 4 10 7 100 4 10 7 < 0.00042248 10 27 4 10 7 < 0.00042248 10
367 294 364 366 mp2an 27 4 10 7 < 0.00042248 10
368 226 simpli 10 7
369 273 368 277 redivcli 27 4 10 7
370 55 369 355 lttri log 10 27 10 27 < 27 4 10 7 27 4 10 7 < 0.00042248 10 log 10 27 10 27 < 0.00042248 10
371 281 367 370 mp2an log 10 27 10 27 < 0.00042248 10
372 125 124 mpbi 10 0 < 10
373 ltmuldiv2 log 10 27 10 27 0.00042248 10 0 < 10 10 log 10 27 10 27 < 0.00042248 log 10 27 10 27 < 0.00042248 10
374 55 72 372 373 mp3an 10 log 10 27 10 27 < 0.00042248 log 10 27 10 27 < 0.00042248 10
375 371 374 mpbir 10 log 10 27 10 27 < 0.00042248
376 12 55 remulcli 7.348 log 10 27 10 27
377 18 55 remulcli 10 log 10 27 10 27
378 376 377 72 lttri 7.348 log 10 27 10 27 < 10 log 10 27 10 27 10 log 10 27 10 27 < 0.00042248 7.348 log 10 27 10 27 < 0.00042248
379 189 375 378 mp2an 7.348 log 10 27 10 27 < 0.00042248
380 379 a1i N 0 10 27 N 7.348 log 10 27 10 27 < 0.00042248
381 47 57 73 162 380 lelttrd N 0 10 27 N 7.348 log N N < 0.00042248