Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Thierry Arnoux
Number Theory
The Ternary Goldbach Conjecture: Final Statement
hgt750lem2
Next ⟩
hgt750lemf
Metamath Proof Explorer
Ascii
Unicode
Theorem
hgt750lem2
Description:
Decimal multiplication galore!
(Contributed by
Thierry Arnoux
, 26-Dec-2021)
Ref
Expression
Assertion
hgt750lem2
⊢
3
⁢
1
.
079955
2
⋅
1
.
414
⁢
1
.
4263
⋅
1
.
03883
<
7
.
348
Proof
Step
Hyp
Ref
Expression
1
1nn0
⊢
1
∈
ℕ
0
2
0re
⊢
0
∈
ℝ
3
7re
⊢
7
∈
ℝ
4
9re
⊢
9
∈
ℝ
5
5re
⊢
5
∈
ℝ
6
5
5
pm3.2i
⊢
5
∈
ℝ
∧
5
∈
ℝ
7
dp2cl
⊢
5
∈
ℝ
∧
5
∈
ℝ
→
55
∈
ℝ
8
6
7
ax-mp
⊢
55
∈
ℝ
9
4
8
pm3.2i
⊢
9
∈
ℝ
∧
55
∈
ℝ
10
dp2cl
⊢
9
∈
ℝ
∧
55
∈
ℝ
→
955
∈
ℝ
11
9
10
ax-mp
⊢
955
∈
ℝ
12
4
11
pm3.2i
⊢
9
∈
ℝ
∧
955
∈
ℝ
13
dp2cl
⊢
9
∈
ℝ
∧
955
∈
ℝ
→
9955
∈
ℝ
14
12
13
ax-mp
⊢
9955
∈
ℝ
15
3
14
pm3.2i
⊢
7
∈
ℝ
∧
9955
∈
ℝ
16
dp2cl
⊢
7
∈
ℝ
∧
9955
∈
ℝ
→
79955
∈
ℝ
17
15
16
ax-mp
⊢
79955
∈
ℝ
18
2
17
pm3.2i
⊢
0
∈
ℝ
∧
79955
∈
ℝ
19
dp2cl
⊢
0
∈
ℝ
∧
79955
∈
ℝ
→
079955
∈
ℝ
20
18
19
ax-mp
⊢
079955
∈
ℝ
21
dpcl
⊢
1
∈
ℕ
0
∧
079955
∈
ℝ
→
1
.
079955
∈
ℝ
22
1
20
21
mp2an
⊢
1
.
079955
∈
ℝ
23
22
resqcli
⊢
1
.
079955
2
∈
ℝ
24
4nn0
⊢
4
∈
ℕ
0
25
4nn
⊢
4
∈
ℕ
26
nnrp
⊢
4
∈
ℕ
→
4
∈
ℝ
+
27
25
26
ax-mp
⊢
4
∈
ℝ
+
28
1
27
rpdp2cl
⊢
14
∈
ℝ
+
29
24
28
rpdp2cl
⊢
414
∈
ℝ
+
30
1
29
rpdpcl
⊢
1
.
414
∈
ℝ
+
31
rpre
⊢
1
.
414
∈
ℝ
+
→
1
.
414
∈
ℝ
32
30
31
ax-mp
⊢
1
.
414
∈
ℝ
33
23
32
remulcli
⊢
1
.
079955
2
⋅
1
.
414
∈
ℝ
34
6re
⊢
6
∈
ℝ
35
1re
⊢
1
∈
ℝ
36
5
35
pm3.2i
⊢
5
∈
ℝ
∧
1
∈
ℝ
37
dp2cl
⊢
5
∈
ℝ
∧
1
∈
ℝ
→
51
∈
ℝ
38
36
37
ax-mp
⊢
51
∈
ℝ
39
34
38
pm3.2i
⊢
6
∈
ℝ
∧
51
∈
ℝ
40
dp2cl
⊢
6
∈
ℝ
∧
51
∈
ℝ
→
651
∈
ℝ
41
39
40
ax-mp
⊢
651
∈
ℝ
42
dpcl
⊢
1
∈
ℕ
0
∧
651
∈
ℝ
→
1
.
651
∈
ℝ
43
1
41
42
mp2an
⊢
1
.
651
∈
ℝ
44
33
43
pm3.2i
⊢
1
.
079955
2
⋅
1
.
414
∈
ℝ
∧
1
.
651
∈
ℝ
45
22
sqge0i
⊢
0
≤
1
.
079955
2
46
rpgt0
⊢
1
.
414
∈
ℝ
+
→
0
<
1
.
414
47
30
46
ax-mp
⊢
0
<
1
.
414
48
2
32
47
ltleii
⊢
0
≤
1
.
414
49
23
32
mulge0i
⊢
0
≤
1
.
079955
2
∧
0
≤
1
.
414
→
0
≤
1
.
079955
2
⋅
1
.
414
50
45
48
49
mp2an
⊢
0
≤
1
.
079955
2
⋅
1
.
414
51
0nn0
⊢
0
∈
ℕ
0
52
7nn0
⊢
7
∈
ℕ
0
53
9nn0
⊢
9
∈
ℕ
0
54
5nn0
⊢
5
∈
ℕ
0
55
5nn
⊢
5
∈
ℕ
56
nnrp
⊢
5
∈
ℕ
→
5
∈
ℝ
+
57
55
56
ax-mp
⊢
5
∈
ℝ
+
58
54
57
rpdp2cl
⊢
55
∈
ℝ
+
59
53
58
rpdp2cl
⊢
955
∈
ℝ
+
60
53
59
rpdp2cl
⊢
9955
∈
ℝ
+
61
52
60
rpdp2cl
⊢
79955
∈
ℝ
+
62
51
61
rpdp2cl
⊢
079955
∈
ℝ
+
63
8nn
⊢
8
∈
ℕ
64
63
rpdp2cl2
⊢
80
∈
ℝ
+
65
51
64
rpdp2cl
⊢
080
∈
ℝ
+
66
9lt10
⊢
9
<
10
67
5lt10
⊢
5
<
10
68
54
57
67
67
dp2lt10
⊢
55
<
10
69
53
58
66
68
dp2lt10
⊢
955
<
10
70
53
59
66
69
dp2lt10
⊢
9955
<
10
71
7p1e8
⊢
7
+
1
=
8
72
52
60
70
71
dp2ltsuc
⊢
79955
<
8
73
8nn0
⊢
8
∈
ℕ
0
74
73
dp20u
⊢
80
=
8
75
72
74
breqtrri
⊢
79955
<
80
76
51
61
64
75
dp2lt
⊢
079955
<
080
77
1
62
65
76
dplt
⊢
1
.
079955
<
1
.
080
78
1
62
rpdpcl
⊢
1
.
079955
∈
ℝ
+
79
rpge0
⊢
1
.
079955
∈
ℝ
+
→
0
≤
1
.
079955
80
78
79
ax-mp
⊢
0
≤
1
.
079955
81
1
65
rpdpcl
⊢
1
.
080
∈
ℝ
+
82
rpge0
⊢
1
.
080
∈
ℝ
+
→
0
≤
1
.
080
83
81
82
ax-mp
⊢
0
≤
1
.
080
84
8re
⊢
8
∈
ℝ
85
84
2
pm3.2i
⊢
8
∈
ℝ
∧
0
∈
ℝ
86
dp2cl
⊢
8
∈
ℝ
∧
0
∈
ℝ
→
80
∈
ℝ
87
85
86
ax-mp
⊢
80
∈
ℝ
88
2
87
pm3.2i
⊢
0
∈
ℝ
∧
80
∈
ℝ
89
dp2cl
⊢
0
∈
ℝ
∧
80
∈
ℝ
→
080
∈
ℝ
90
88
89
ax-mp
⊢
080
∈
ℝ
91
dpcl
⊢
1
∈
ℕ
0
∧
080
∈
ℝ
→
1
.
080
∈
ℝ
92
1
90
91
mp2an
⊢
1
.
080
∈
ℝ
93
22
92
lt2sqi
⊢
0
≤
1
.
079955
∧
0
≤
1
.
080
→
1
.
079955
<
1
.
080
↔
1
.
079955
2
<
1
.
080
2
94
80
83
93
mp2an
⊢
1
.
079955
<
1
.
080
↔
1
.
079955
2
<
1
.
080
2
95
77
94
mpbi
⊢
1
.
079955
2
<
1
.
080
2
96
92
recni
⊢
1
.
080
∈
ℂ
97
96
sqvali
⊢
1
.
080
2
=
1
.
080
⋅
1
.
080
98
6nn0
⊢
6
∈
ℕ
0
99
1
98
deccl
⊢
16
∈
ℕ
0
100
98
24
deccl
⊢
64
∈
ℕ
0
101
4lt10
⊢
4
<
10
102
10pos
⊢
0
<
10
103
99
51
deccl
⊢
160
∈
ℕ
0
104
eqid
⊢
1600
=
1600
105
eqid
⊢
64
=
64
106
eqid
⊢
160
=
160
107
98
dec0h
⊢
6
=
06
108
99
nn0cni
⊢
16
∈
ℂ
109
108
addid1i
⊢
16
+
0
=
16
110
6cn
⊢
6
∈
ℂ
111
110
addid2i
⊢
0
+
6
=
6
112
99
51
51
98
106
107
109
111
decadd
⊢
160
+
6
=
166
113
4cn
⊢
4
∈
ℂ
114
113
addid2i
⊢
0
+
4
=
4
115
103
51
98
24
104
105
112
114
decadd
⊢
1600
+
64
=
1664
116
1t1e1
⊢
1
⋅
1
=
1
117
1
dp0u
⊢
1
.
0
=
1
118
117
117
oveq12i
⊢
1
.
0
⋅
1
.
0
=
1
⋅
1
119
51
dp20u
⊢
00
=
0
120
119
oveq2i
⊢
1
.
00
=
1
.
0
121
120
117
eqtri
⊢
1
.
00
=
1
122
116
118
121
3eqtr4i
⊢
1
.
0
⋅
1
.
0
=
1
.
00
123
8t8e64
⊢
8
⋅
8
=
64
124
73
dp0u
⊢
8
.
0
=
8
125
124
124
oveq12i
⊢
8
.
0
⋅
8
.
0
=
8
⋅
8
126
119
oveq2i
⊢
64
.
00
=
64
.
0
127
100
dp0u
⊢
64
.
0
=
64
128
126
127
eqtri
⊢
64
.
00
=
64
129
123
125
128
3eqtr4i
⊢
8
.
0
⋅
8
.
0
=
64
.
00
130
10nn0
⊢
10
∈
ℕ
0
131
130
51
deccl
⊢
100
∈
ℕ
0
132
eqid
⊢
1001
=
1001
133
eqid
⊢
166
=
166
134
eqid
⊢
100
=
100
135
eqid
⊢
16
=
16
136
dec10p
⊢
10
+
1
=
11
137
130
51
1
98
134
135
136
111
decadd
⊢
100
+
16
=
116
138
ax-1cn
⊢
1
∈
ℂ
139
138
110
addcomi
⊢
1
+
6
=
6
+
1
140
6p1e7
⊢
6
+
1
=
7
141
139
140
eqtri
⊢
1
+
6
=
7
142
131
1
99
98
132
133
137
141
decadd
⊢
1001
+
166
=
1167
143
eqid
⊢
17
=
17
144
141
oveq1i
⊢
1
+
6
+
1
=
7
+
1
145
144
71
eqtri
⊢
1
+
6
+
1
=
8
146
7p4e11
⊢
7
+
4
=
11
147
1
52
98
24
143
105
145
1
146
decaddc
⊢
17
+
64
=
81
148
119
oveq2i
⊢
16
.
00
=
16
.
0
149
99
dp0u
⊢
16
.
0
=
16
150
148
149
eqtri
⊢
16
.
00
=
16
151
121
150
oveq12i
⊢
1
.
00
+
16
.
00
=
1
+
16
152
1
dec0h
⊢
1
=
01
153
138
addid2i
⊢
0
+
1
=
1
154
51
1
1
98
152
135
153
141
decadd
⊢
1
+
16
=
17
155
151
154
eqtri
⊢
1
.
00
+
16
.
00
=
17
156
155
128
oveq12i
⊢
1
.
00
+
16
.
00
+
64
.
00
=
17
+
64
157
117
124
oveq12i
⊢
1
.
0
+
8
.
0
=
1
+
8
158
8cn
⊢
8
∈
ℂ
159
138
158
addcomi
⊢
1
+
8
=
8
+
1
160
8p1e9
⊢
8
+
1
=
9
161
157
159
160
3eqtri
⊢
1
.
0
+
8
.
0
=
9
162
161
161
oveq12i
⊢
1
.
0
+
8
.
0
⁢
1
.
0
+
8
.
0
=
9
⋅
9
163
9t9e81
⊢
9
⋅
9
=
81
164
162
163
eqtri
⊢
1
.
0
+
8
.
0
⁢
1
.
0
+
8
.
0
=
81
165
147
156
164
3eqtr4ri
⊢
1
.
0
+
8
.
0
⁢
1
.
0
+
8
.
0
=
1
.
00
+
16
.
00
+
64
.
00
166
1
51
73
51
1
73
51
51
51
51
1
99
51
51
100
51
51
1
98
98
24
1
1
98
52
101
102
102
115
122
129
142
165
dpmul4
⊢
1
.
080
⋅
1
.
080
<
1
.
167
167
97
166
eqbrtri
⊢
1
.
080
2
<
1
.
167
168
92
resqcli
⊢
1
.
080
2
∈
ℝ
169
34
3
pm3.2i
⊢
6
∈
ℝ
∧
7
∈
ℝ
170
dp2cl
⊢
6
∈
ℝ
∧
7
∈
ℝ
→
67
∈
ℝ
171
169
170
ax-mp
⊢
67
∈
ℝ
172
35
171
pm3.2i
⊢
1
∈
ℝ
∧
67
∈
ℝ
173
dp2cl
⊢
1
∈
ℝ
∧
67
∈
ℝ
→
167
∈
ℝ
174
172
173
ax-mp
⊢
167
∈
ℝ
175
dpcl
⊢
1
∈
ℕ
0
∧
167
∈
ℝ
→
1
.
167
∈
ℝ
176
1
174
175
mp2an
⊢
1
.
167
∈
ℝ
177
23
168
176
lttri
⊢
1
.
079955
2
<
1
.
080
2
∧
1
.
080
2
<
1
.
167
→
1
.
079955
2
<
1
.
167
178
95
167
177
mp2an
⊢
1
.
079955
2
<
1
.
167
179
23
176
32
47
ltmul1ii
⊢
1
.
079955
2
<
1
.
167
↔
1
.
079955
2
⋅
1
.
414
<
1
.
167
⋅
1
.
414
180
178
179
mpbi
⊢
1
.
079955
2
⋅
1
.
414
<
1
.
167
⋅
1
.
414
181
2nn0
⊢
2
∈
ℕ
0
182
3nn0
⊢
3
∈
ℕ
0
183
1lt10
⊢
1
<
10
184
3lt10
⊢
3
<
10
185
8lt10
⊢
8
<
10
186
130
53
deccl
⊢
109
∈
ℕ
0
187
eqid
⊢
1092
=
1092
188
53
dec0h
⊢
9
=
09
189
186
nn0cni
⊢
109
∈
ℂ
190
189
addid1i
⊢
109
+
0
=
109
191
dec10p
⊢
10
+
0
=
10
192
138
addid1i
⊢
1
+
0
=
1
193
1
51
51
1
191
152
192
153
decadd
⊢
10
+
0
+
1
=
11
194
9p1e10
⊢
9
+
1
=
10
195
130
53
51
1
190
152
193
51
194
decaddc
⊢
109
+
0
+
1
=
110
196
9cn
⊢
9
∈
ℂ
197
2cn
⊢
2
∈
ℂ
198
196
197
addcomi
⊢
9
+
2
=
2
+
9
199
9p2e11
⊢
9
+
2
=
11
200
198
199
eqtr3i
⊢
2
+
9
=
11
201
186
181
51
53
187
188
195
1
200
decaddc
⊢
1092
+
9
=
1101
202
113
138
mulcomi
⊢
4
⋅
1
=
1
⋅
4
203
113
mulid1i
⊢
4
⋅
1
=
4
204
202
203
eqtr3i
⊢
1
⋅
4
=
4
205
24
dec0h
⊢
4
=
04
206
203
202
205
3eqtr3i
⊢
1
⋅
4
=
04
207
138
113
addcli
⊢
1
+
4
∈
ℂ
208
207
addid1i
⊢
1
+
4
+
0
=
1
+
4
209
113
138
addcomi
⊢
4
+
1
=
1
+
4
210
4p1e5
⊢
4
+
1
=
5
211
208
209
210
3eqtr2i
⊢
1
+
4
+
0
=
5
212
54
dec0h
⊢
5
=
05
213
211
212
eqtri
⊢
1
+
4
+
0
=
05
214
1
1
1
24
51
51
54
24
116
204
116
206
213
192
dpmul
⊢
1
.
1
⋅
1
.
4
=
1
.
54
215
110
mulid1i
⊢
6
⋅
1
=
6
216
6t4e24
⊢
6
⋅
4
=
24
217
7cn
⊢
7
∈
ℂ
218
217
mulid1i
⊢
7
⋅
1
=
7
219
7t4e28
⊢
7
⋅
4
=
28
220
181
24
deccl
⊢
24
∈
ℕ
0
221
220
nn0cni
⊢
24
∈
ℂ
222
221
217
addcomi
⊢
24
+
7
=
7
+
24
223
eqid
⊢
24
=
24
224
2p1e3
⊢
2
+
1
=
3
225
217
113
146
addcomli
⊢
4
+
7
=
11
226
181
24
52
223
224
1
225
decaddci
⊢
24
+
7
=
31
227
222
226
eqtr3i
⊢
7
+
24
=
31
228
227
oveq1i
⊢
7
+
24
+
2
=
31
+
2
229
eqid
⊢
31
=
31
230
197
138
224
addcomli
⊢
1
+
2
=
3
231
182
1
181
229
230
decaddi
⊢
31
+
2
=
33
232
228
231
eqtri
⊢
7
+
24
+
2
=
33
233
6p3e9
⊢
6
+
3
=
9
234
98
52
1
24
181
182
182
73
215
216
218
219
232
233
dpmul
⊢
6
.
7
⋅
1
.
4
=
9
.
38
235
1
54
deccl
⊢
15
∈
ℕ
0
236
235
24
deccl
⊢
154
∈
ℕ
0
237
51
1
deccl
⊢
01
∈
ℕ
0
238
237
1
deccl
⊢
011
∈
ℕ
0
239
eqid
⊢
1541
=
1541
240
152
deceq1i
⊢
11
=
011
241
240
deceq1i
⊢
110
=
0110
242
eqid
⊢
154
=
154
243
eqid
⊢
011
=
011
244
152
oveq2i
⊢
15
+
1
=
15
+
01
245
eqid
⊢
15
=
15
246
5p1e6
⊢
5
+
1
=
6
247
1
54
1
245
246
decaddi
⊢
15
+
1
=
16
248
244
247
eqtr3i
⊢
15
+
01
=
16
249
235
24
237
1
242
243
248
210
decadd
⊢
154
+
011
=
165
250
236
1
238
51
239
241
249
192
decadd
⊢
1541
+
110
=
1651
251
7t2e14
⊢
7
⋅
2
=
14
252
8t7e56
⊢
8
⋅
7
=
56
253
158
217
252
mulcomli
⊢
7
⋅
8
=
56
254
8t2e16
⊢
8
⋅
2
=
16
255
eqid
⊢
56
=
56
256
5cn
⊢
5
∈
ℂ
257
256
138
246
addcomli
⊢
1
+
5
=
6
258
257
oveq1i
⊢
1
+
5
+
1
=
6
+
1
259
258
140
eqtri
⊢
1
+
5
+
1
=
7
260
6p6e12
⊢
6
+
6
=
12
261
1
98
54
98
135
255
259
181
260
decaddc
⊢
16
+
56
=
72
262
261
oveq1i
⊢
16
+
56
+
6
=
72
+
6
263
eqid
⊢
72
=
72
264
6p2e8
⊢
6
+
2
=
8
265
110
197
264
addcomli
⊢
2
+
6
=
8
266
52
181
98
263
265
decaddi
⊢
72
+
6
=
78
267
262
266
eqtri
⊢
16
+
56
+
6
=
78
268
eqid
⊢
14
=
14
269
1p1e2
⊢
1
+
1
=
2
270
1
24
52
268
269
1
225
decaddci
⊢
14
+
7
=
21
271
52
73
181
73
98
52
73
24
251
253
254
123
267
270
dpmul
⊢
7
.
8
⋅
2
.
8
=
21
.
84
272
eqid
⊢
11
=
11
273
eqid
⊢
67
=
67
274
217
138
71
addcomli
⊢
1
+
7
=
8
275
1
1
98
52
272
273
141
274
decadd
⊢
11
+
67
=
78
276
1
1
98
52
52
73
275
dpadd
⊢
1
.
1
+
6
.
7
=
7
.
8
277
4p4e8
⊢
4
+
4
=
8
278
1
24
1
24
268
268
269
277
decadd
⊢
14
+
14
=
28
279
1
24
1
24
181
73
278
dpadd
⊢
1
.
4
+
1
.
4
=
2
.
8
280
276
279
oveq12i
⊢
1
.
1
+
6
.
7
⁢
1
.
4
+
1
.
4
=
7
.
8
⋅
2
.
8
281
1
181
deccl
⊢
12
∈
ℕ
0
282
eqid
⊢
109
=
109
283
130
nn0cni
⊢
10
∈
ℂ
284
283
138
136
addcomli
⊢
1
+
10
=
11
285
1
1
269
284
decsuc
⊢
1
+
10
+
1
=
12
286
9p5e14
⊢
9
+
5
=
14
287
196
256
286
addcomli
⊢
5
+
9
=
14
288
1
54
130
53
245
282
285
24
287
decaddc
⊢
15
+
109
=
124
289
4p2e6
⊢
4
+
2
=
6
290
235
24
186
181
242
187
288
289
decadd
⊢
154
+
1092
=
1246
291
1
54
24
130
53
281
181
24
98
290
dpadd3
⊢
1
.
54
+
10
.
92
=
12
.
46
292
291
oveq1i
⊢
1
.
54
+
10
.
92
+
9
.
38
=
12
.
46
+
9
.
38
293
181
1
deccl
⊢
21
∈
ℕ
0
294
281
24
deccl
⊢
124
∈
ℕ
0
295
53
182
deccl
⊢
93
∈
ℕ
0
296
eqid
⊢
1246
=
1246
297
eqid
⊢
938
=
938
298
eqid
⊢
124
=
124
299
eqid
⊢
93
=
93
300
eqid
⊢
12
=
12
301
1
181
53
300
269
1
200
decaddci
⊢
12
+
9
=
21
302
4p3e7
⊢
4
+
3
=
7
303
281
24
53
182
298
299
301
302
decadd
⊢
124
+
93
=
217
304
293
52
71
303
decsuc
⊢
124
+
93
+
1
=
218
305
8p6e14
⊢
8
+
6
=
14
306
158
110
305
addcomli
⊢
6
+
8
=
14
307
294
98
295
73
296
297
304
24
306
decaddc
⊢
1246
+
938
=
2184
308
281
24
98
53
182
293
73
73
24
307
dpadd3
⊢
12
.
46
+
9
.
38
=
21
.
84
309
292
308
eqtri
⊢
1
.
54
+
10
.
92
+
9
.
38
=
21
.
84
310
271
280
309
3eqtr4i
⊢
1
.
1
+
6
.
7
⁢
1
.
4
+
1
.
4
=
1
.
54
+
10
.
92
+
9
.
38
311
1
1
98
52
1
1
54
24
24
24
1
130
53
181
53
182
73
1
1
51
1
1
98
54
1
183
184
185
201
214
234
250
310
dpmul4
⊢
1
.
167
⋅
1
.
414
<
1
.
651
312
176
32
remulcli
⊢
1
.
167
⋅
1
.
414
∈
ℝ
313
33
312
43
lttri
⊢
1
.
079955
2
⋅
1
.
414
<
1
.
167
⋅
1
.
414
∧
1
.
167
⋅
1
.
414
<
1
.
651
→
1
.
079955
2
⋅
1
.
414
<
1
.
651
314
180
311
313
mp2an
⊢
1
.
079955
2
⋅
1
.
414
<
1
.
651
315
50
314
pm3.2i
⊢
0
≤
1
.
079955
2
⋅
1
.
414
∧
1
.
079955
2
⋅
1
.
414
<
1
.
651
316
44
315
pm3.2i
⊢
1
.
079955
2
⋅
1
.
414
∈
ℝ
∧
1
.
651
∈
ℝ
∧
0
≤
1
.
079955
2
⋅
1
.
414
∧
1
.
079955
2
⋅
1
.
414
<
1
.
651
317
4re
⊢
4
∈
ℝ
318
2re
⊢
2
∈
ℝ
319
3re
⊢
3
∈
ℝ
320
34
319
pm3.2i
⊢
6
∈
ℝ
∧
3
∈
ℝ
321
dp2cl
⊢
6
∈
ℝ
∧
3
∈
ℝ
→
63
∈
ℝ
322
320
321
ax-mp
⊢
63
∈
ℝ
323
318
322
pm3.2i
⊢
2
∈
ℝ
∧
63
∈
ℝ
324
dp2cl
⊢
2
∈
ℝ
∧
63
∈
ℝ
→
263
∈
ℝ
325
323
324
ax-mp
⊢
263
∈
ℝ
326
317
325
pm3.2i
⊢
4
∈
ℝ
∧
263
∈
ℝ
327
dp2cl
⊢
4
∈
ℝ
∧
263
∈
ℝ
→
4263
∈
ℝ
328
326
327
ax-mp
⊢
4263
∈
ℝ
329
dpcl
⊢
1
∈
ℕ
0
∧
4263
∈
ℝ
→
1
.
4263
∈
ℝ
330
1
328
329
mp2an
⊢
1
.
4263
∈
ℝ
331
84
319
pm3.2i
⊢
8
∈
ℝ
∧
3
∈
ℝ
332
dp2cl
⊢
8
∈
ℝ
∧
3
∈
ℝ
→
83
∈
ℝ
333
331
332
ax-mp
⊢
83
∈
ℝ
334
84
333
pm3.2i
⊢
8
∈
ℝ
∧
83
∈
ℝ
335
dp2cl
⊢
8
∈
ℝ
∧
83
∈
ℝ
→
883
∈
ℝ
336
334
335
ax-mp
⊢
883
∈
ℝ
337
319
336
pm3.2i
⊢
3
∈
ℝ
∧
883
∈
ℝ
338
dp2cl
⊢
3
∈
ℝ
∧
883
∈
ℝ
→
3883
∈
ℝ
339
337
338
ax-mp
⊢
3883
∈
ℝ
340
2
339
pm3.2i
⊢
0
∈
ℝ
∧
3883
∈
ℝ
341
dp2cl
⊢
0
∈
ℝ
∧
3883
∈
ℝ
→
03883
∈
ℝ
342
340
341
ax-mp
⊢
03883
∈
ℝ
343
dpcl
⊢
1
∈
ℕ
0
∧
03883
∈
ℝ
→
1
.
03883
∈
ℝ
344
1
342
343
mp2an
⊢
1
.
03883
∈
ℝ
345
330
344
remulcli
⊢
1
.
4263
⋅
1
.
03883
∈
ℝ
346
317
333
pm3.2i
⊢
4
∈
ℝ
∧
83
∈
ℝ
347
dp2cl
⊢
4
∈
ℝ
∧
83
∈
ℝ
→
483
∈
ℝ
348
346
347
ax-mp
⊢
483
∈
ℝ
349
dpcl
⊢
1
∈
ℕ
0
∧
483
∈
ℝ
→
1
.
483
∈
ℝ
350
1
348
349
mp2an
⊢
1
.
483
∈
ℝ
351
345
350
pm3.2i
⊢
1
.
4263
⋅
1
.
03883
∈
ℝ
∧
1
.
483
∈
ℝ
352
3rp
⊢
3
∈
ℝ
+
353
98
352
rpdp2cl
⊢
63
∈
ℝ
+
354
181
353
rpdp2cl
⊢
263
∈
ℝ
+
355
24
354
rpdp2cl
⊢
4263
∈
ℝ
+
356
1
355
rpdpcl
⊢
1
.
4263
∈
ℝ
+
357
rpge0
⊢
1
.
4263
∈
ℝ
+
→
0
≤
1
.
4263
358
356
357
ax-mp
⊢
0
≤
1
.
4263
359
73
352
rpdp2cl
⊢
83
∈
ℝ
+
360
73
359
rpdp2cl
⊢
883
∈
ℝ
+
361
182
360
rpdp2cl
⊢
3883
∈
ℝ
+
362
51
361
rpdp2cl
⊢
03883
∈
ℝ
+
363
1
362
rpdpcl
⊢
1
.
03883
∈
ℝ
+
364
rpge0
⊢
1
.
03883
∈
ℝ
+
→
0
≤
1
.
03883
365
363
364
ax-mp
⊢
0
≤
1
.
03883
366
330
344
mulge0i
⊢
0
≤
1
.
4263
∧
0
≤
1
.
03883
→
0
≤
1
.
4263
⋅
1
.
03883
367
358
365
366
mp2an
⊢
0
≤
1
.
4263
⋅
1
.
03883
368
318
3
pm3.2i
⊢
2
∈
ℝ
∧
7
∈
ℝ
369
dp2cl
⊢
2
∈
ℝ
∧
7
∈
ℝ
→
27
∈
ℝ
370
368
369
ax-mp
⊢
27
∈
ℝ
371
317
370
pm3.2i
⊢
4
∈
ℝ
∧
27
∈
ℝ
372
dp2cl
⊢
4
∈
ℝ
∧
27
∈
ℝ
→
427
∈
ℝ
373
371
372
ax-mp
⊢
427
∈
ℝ
374
dpcl
⊢
1
∈
ℕ
0
∧
427
∈
ℝ
→
1
.
427
∈
ℝ
375
1
373
374
mp2an
⊢
1
.
427
∈
ℝ
376
330
375
pm3.2i
⊢
1
.
4263
∈
ℝ
∧
1
.
427
∈
ℝ
377
7nn
⊢
7
∈
ℕ
378
nnrp
⊢
7
∈
ℕ
→
7
∈
ℝ
+
379
377
378
ax-mp
⊢
7
∈
ℝ
+
380
181
379
rpdp2cl
⊢
27
∈
ℝ
+
381
24
380
rpdp2cl
⊢
427
∈
ℝ
+
382
98
352
184
140
dp2ltsuc
⊢
63
<
7
383
181
353
379
382
dp2lt
⊢
263
<
27
384
24
354
380
383
dp2lt
⊢
4263
<
427
385
1
355
381
384
dplt
⊢
1
.
4263
<
1
.
427
386
358
385
pm3.2i
⊢
0
≤
1
.
4263
∧
1
.
4263
<
1
.
427
387
376
386
pm3.2i
⊢
1
.
4263
∈
ℝ
∧
1
.
427
∈
ℝ
∧
0
≤
1
.
4263
∧
1
.
4263
<
1
.
427
388
319
4
pm3.2i
⊢
3
∈
ℝ
∧
9
∈
ℝ
389
dp2cl
⊢
3
∈
ℝ
∧
9
∈
ℝ
→
39
∈
ℝ
390
388
389
ax-mp
⊢
39
∈
ℝ
391
2
390
pm3.2i
⊢
0
∈
ℝ
∧
39
∈
ℝ
392
dp2cl
⊢
0
∈
ℝ
∧
39
∈
ℝ
→
039
∈
ℝ
393
391
392
ax-mp
⊢
039
∈
ℝ
394
dpcl
⊢
1
∈
ℕ
0
∧
039
∈
ℝ
→
1
.
039
∈
ℝ
395
1
393
394
mp2an
⊢
1
.
039
∈
ℝ
396
344
395
pm3.2i
⊢
1
.
03883
∈
ℝ
∧
1
.
039
∈
ℝ
397
9nn
⊢
9
∈
ℕ
398
nnrp
⊢
9
∈
ℕ
→
9
∈
ℝ
+
399
397
398
ax-mp
⊢
9
∈
ℝ
+
400
182
399
rpdp2cl
⊢
39
∈
ℝ
+
401
51
400
rpdp2cl
⊢
039
∈
ℝ
+
402
73
352
185
184
dp2lt10
⊢
83
<
10
403
73
359
402
160
dp2ltsuc
⊢
883
<
9
404
182
360
399
403
dp2lt
⊢
3883
<
39
405
51
361
400
404
dp2lt
⊢
03883
<
039
406
1
362
401
405
dplt
⊢
1
.
03883
<
1
.
039
407
365
406
pm3.2i
⊢
0
≤
1
.
03883
∧
1
.
03883
<
1
.
039
408
396
407
pm3.2i
⊢
1
.
03883
∈
ℝ
∧
1
.
039
∈
ℝ
∧
0
≤
1
.
03883
∧
1
.
03883
<
1
.
039
409
ltmul12a
⊢
1
.
4263
∈
ℝ
∧
1
.
427
∈
ℝ
∧
0
≤
1
.
4263
∧
1
.
4263
<
1
.
427
∧
1
.
03883
∈
ℝ
∧
1
.
039
∈
ℝ
∧
0
≤
1
.
03883
∧
1
.
03883
<
1
.
039
→
1
.
4263
⋅
1
.
03883
<
1
.
427
⋅
1
.
039
410
387
408
409
mp2an
⊢
1
.
4263
⋅
1
.
03883
<
1
.
427
⋅
1
.
039
411
6lt10
⊢
6
<
10
412
73
1
deccl
⊢
81
∈
ℕ
0
413
eqid
⊢
816
=
816
414
eqid
⊢
10
=
10
415
eqid
⊢
81
=
81
416
73
1
269
415
decsuc
⊢
81
+
1
=
82
417
73
dec0h
⊢
8
=
08
418
417
deceq1i
⊢
82
=
082
419
416
418
eqtri
⊢
81
+
1
=
082
420
110
addid1i
⊢
6
+
0
=
6
421
412
98
1
51
413
414
419
420
decadd
⊢
816
+
10
=
0826
422
138
mul01i
⊢
1
⋅
0
=
0
423
113
mul01i
⊢
4
⋅
0
=
0
424
51
dec0h
⊢
0
=
00
425
423
424
eqtri
⊢
4
⋅
0
=
00
426
113
addid1i
⊢
4
+
0
=
4
427
426
oveq1i
⊢
4
+
0
+
0
=
4
+
0
428
427
426
205
3eqtri
⊢
4
+
0
+
0
=
04
429
1
24
1
51
51
51
24
51
116
422
203
425
428
192
dpmul
⊢
1
.
4
⋅
1
.
0
=
1
.
40
430
3cn
⊢
3
∈
ℂ
431
3t2e6
⊢
3
⋅
2
=
6
432
430
197
431
mulcomli
⊢
2
⋅
3
=
6
433
9t2e18
⊢
9
⋅
2
=
18
434
196
197
433
mulcomli
⊢
2
⋅
9
=
18
435
7t3e21
⊢
7
⋅
3
=
21
436
9t7e63
⊢
9
⋅
7
=
63
437
196
217
436
mulcomli
⊢
7
⋅
9
=
63
438
eqid
⊢
21
=
21
439
eqid
⊢
18
=
18
440
159
160
eqtri
⊢
1
+
8
=
9
441
181
1
1
73
438
439
224
440
decadd
⊢
21
+
18
=
39
442
441
oveq1i
⊢
21
+
18
+
6
=
39
+
6
443
eqid
⊢
39
=
39
444
3p1e4
⊢
3
+
1
=
4
445
9p6e15
⊢
9
+
6
=
15
446
182
53
98
443
444
54
445
decaddci
⊢
39
+
6
=
45
447
442
446
eqtri
⊢
21
+
18
+
6
=
45
448
6p4e10
⊢
6
+
4
=
10
449
181
52
182
53
98
24
54
182
432
434
435
437
447
448
dpmul
⊢
2
.
7
⋅
3
.
9
=
10
.
53
450
1
24
deccl
⊢
14
∈
ℕ
0
451
450
51
deccl
⊢
140
∈
ℕ
0
452
417
73
eqeltrri
⊢
08
∈
ℕ
0
453
eqid
⊢
1401
=
1401
454
eqid
⊢
082
=
082
455
eqid
⊢
140
=
140
456
417
158
eqeltrri
⊢
08
∈
ℂ
457
0cn
⊢
0
∈
ℂ
458
417
oveq1i
⊢
8
+
0
=
08
+
0
459
158
addid1i
⊢
8
+
0
=
8
460
458
459
eqtr3i
⊢
08
+
0
=
8
461
456
457
460
addcomli
⊢
0
+
08
=
8
462
450
51
452
455
461
decaddi
⊢
140
+
08
=
148
463
451
1
452
181
453
454
462
230
decadd
⊢
1401
+
082
=
1483
464
4t4e16
⊢
4
⋅
4
=
16
465
9t4e36
⊢
9
⋅
4
=
36
466
196
113
465
mulcomli
⊢
4
⋅
9
=
36
467
196
mulid1i
⊢
9
⋅
1
=
9
468
467
188
eqtri
⊢
9
⋅
1
=
09
469
196
138
468
mulcomli
⊢
1
⋅
9
=
09
470
182
98
deccl
⊢
36
∈
ℕ
0
471
470
nn0cni
⊢
36
∈
ℂ
472
eqid
⊢
36
=
36
473
182
98
24
472
444
51
448
decaddci
⊢
36
+
4
=
40
474
471
113
473
addcomli
⊢
4
+
36
=
40
475
474
oveq1i
⊢
4
+
36
+
0
=
40
+
0
476
24
51
deccl
⊢
40
∈
ℕ
0
477
476
nn0cni
⊢
40
∈
ℂ
478
477
addid1i
⊢
40
+
0
=
40
479
475
478
eqtri
⊢
4
+
36
+
0
=
40
480
1
98
24
135
269
51
448
decaddci
⊢
16
+
4
=
20
481
24
1
24
53
51
24
51
53
464
466
204
469
479
480
dpmul
⊢
4
.
1
⋅
4
.
9
=
20
.
09
482
eqid
⊢
27
=
27
483
230
oveq1i
⊢
1
+
2
+
1
=
3
+
1
484
483
444
eqtri
⊢
1
+
2
+
1
=
4
485
1
24
181
52
268
482
484
1
225
decaddc
⊢
14
+
27
=
41
486
1
24
181
52
24
1
485
dpadd
⊢
1
.
4
+
2
.
7
=
4
.
1
487
430
138
444
addcomli
⊢
1
+
3
=
4
488
196
addid2i
⊢
0
+
9
=
9
489
1
51
182
53
414
443
487
488
decadd
⊢
10
+
39
=
49
490
1
51
182
53
24
53
489
dpadd
⊢
1
.
0
+
3
.
9
=
4
.
9
491
486
490
oveq12i
⊢
1
.
4
+
2
.
7
⁢
1
.
0
+
3
.
9
=
4
.
1
⋅
4
.
9
492
1
24
73
1
268
415
440
210
decadd
⊢
14
+
81
=
95
493
450
51
412
98
455
413
492
111
decadd
⊢
140
+
816
=
956
494
1
24
51
73
1
53
98
54
98
493
dpadd3
⊢
1
.
40
+
8
.
16
=
9
.
56
495
494
oveq1i
⊢
1
.
40
+
8
.
16
+
10
.
53
=
9
.
56
+
10
.
53
496
181
51
deccl
⊢
20
∈
ℕ
0
497
53
54
deccl
⊢
95
∈
ℕ
0
498
130
54
deccl
⊢
105
∈
ℕ
0
499
eqid
⊢
956
=
956
500
eqid
⊢
1053
=
1053
501
eqid
⊢
95
=
95
502
eqid
⊢
105
=
105
503
dec10p
⊢
10
+
9
=
19
504
283
196
503
addcomli
⊢
9
+
10
=
19
505
504
oveq1i
⊢
9
+
10
+
1
=
19
+
1
506
eqid
⊢
19
=
19
507
1
53
1
506
269
51
194
decaddci
⊢
19
+
1
=
20
508
505
507
eqtri
⊢
9
+
10
+
1
=
20
509
5p5e10
⊢
5
+
5
=
10
510
53
54
130
54
501
502
508
51
509
decaddc
⊢
95
+
105
=
200
511
497
98
498
182
499
500
510
233
decadd
⊢
956
+
1053
=
2009
512
53
54
98
130
54
496
182
51
53
511
dpadd3
⊢
9
.
56
+
10
.
53
=
20
.
09
513
495
512
eqtri
⊢
1
.
40
+
8
.
16
+
10
.
53
=
20
.
09
514
481
491
513
3eqtr4i
⊢
1
.
4
+
2
.
7
⁢
1
.
0
+
3
.
9
=
1
.
40
+
8
.
16
+
10
.
53
515
1
24
181
52
1
182
24
51
51
53
1
73
1
98
130
54
182
51
73
181
98
1
24
73
182
411
67
184
421
429
449
463
514
dpmul4
⊢
1
.
427
⋅
1
.
039
<
1
.
483
516
375
395
remulcli
⊢
1
.
427
⋅
1
.
039
∈
ℝ
517
345
516
350
lttri
⊢
1
.
4263
⋅
1
.
03883
<
1
.
427
⋅
1
.
039
∧
1
.
427
⋅
1
.
039
<
1
.
483
→
1
.
4263
⋅
1
.
03883
<
1
.
483
518
410
515
517
mp2an
⊢
1
.
4263
⋅
1
.
03883
<
1
.
483
519
367
518
pm3.2i
⊢
0
≤
1
.
4263
⋅
1
.
03883
∧
1
.
4263
⋅
1
.
03883
<
1
.
483
520
351
519
pm3.2i
⊢
1
.
4263
⋅
1
.
03883
∈
ℝ
∧
1
.
483
∈
ℝ
∧
0
≤
1
.
4263
⋅
1
.
03883
∧
1
.
4263
⋅
1
.
03883
<
1
.
483
521
ltmul12a
⊢
1
.
079955
2
⋅
1
.
414
∈
ℝ
∧
1
.
651
∈
ℝ
∧
0
≤
1
.
079955
2
⋅
1
.
414
∧
1
.
079955
2
⋅
1
.
414
<
1
.
651
∧
1
.
4263
⋅
1
.
03883
∈
ℝ
∧
1
.
483
∈
ℝ
∧
0
≤
1
.
4263
⋅
1
.
03883
∧
1
.
4263
⋅
1
.
03883
<
1
.
483
→
1
.
079955
2
⋅
1
.
414
⁢
1
.
4263
⋅
1
.
03883
<
1
.
651
⋅
1
.
483
522
316
520
521
mp2an
⊢
1
.
079955
2
⋅
1
.
414
⁢
1
.
4263
⋅
1
.
03883
<
1
.
651
⋅
1
.
483
523
24
181
deccl
⊢
42
∈
ℕ
0
524
496
24
deccl
⊢
204
∈
ℕ
0
525
eqid
⊢
2042
=
2042
526
eqid
⊢
42
=
42
527
eqid
⊢
204
=
204
528
496
24
24
527
277
decaddi
⊢
204
+
4
=
208
529
2p2e4
⊢
2
+
2
=
4
530
524
181
24
181
525
526
528
529
decadd
⊢
2042
+
42
=
2084
531
448
oveq1i
⊢
6
+
4
+
2
=
10
+
2
532
dec10p
⊢
10
+
2
=
12
533
531
532
eqtri
⊢
6
+
4
+
2
=
12
534
1
98
1
24
181
1
181
24
116
204
215
216
533
269
dpmul
⊢
1
.
6
⋅
1
.
4
=
2
.
24
535
8t5e40
⊢
8
⋅
5
=
40
536
158
256
535
mulcomli
⊢
5
⋅
8
=
40
537
5t3e15
⊢
5
⋅
3
=
15
538
158
mulid2i
⊢
1
⋅
8
=
8
539
430
mulid2i
⊢
1
⋅
3
=
3
540
182
dec0h
⊢
3
=
03
541
539
540
eqtri
⊢
1
⋅
3
=
03
542
235
nn0cni
⊢
15
∈
ℂ
543
8p5e13
⊢
8
+
5
=
13
544
158
256
543
addcomli
⊢
5
+
8
=
13
545
1
54
73
245
269
182
544
decaddci
⊢
15
+
8
=
23
546
542
158
545
addcomli
⊢
8
+
15
=
23
547
546
oveq1i
⊢
8
+
15
+
0
=
23
+
0
548
181
182
deccl
⊢
23
∈
ℕ
0
549
548
nn0cni
⊢
23
∈
ℂ
550
549
addid1i
⊢
23
+
0
=
23
551
547
550
eqtri
⊢
8
+
15
+
0
=
23
552
eqid
⊢
40
=
40
553
197
addid2i
⊢
0
+
2
=
2
554
24
51
181
552
553
decaddi
⊢
40
+
2
=
42
555
54
1
73
182
51
181
182
182
536
537
538
541
551
554
dpmul
⊢
5
.
1
⋅
8
.
3
=
42
.
33
556
181
181
deccl
⊢
22
∈
ℕ
0
557
556
24
deccl
⊢
224
∈
ℕ
0
558
eqid
⊢
2241
=
2241
559
eqid
⊢
208
=
208
560
eqid
⊢
224
=
224
561
eqid
⊢
20
=
20
562
eqid
⊢
22
=
22
563
181
181
181
562
529
decaddi
⊢
22
+
2
=
24
564
556
24
181
51
560
561
563
426
decadd
⊢
224
+
20
=
244
565
557
1
496
73
558
559
564
440
decadd
⊢
2241
+
208
=
2449
566
556
98
deccl
⊢
226
∈
ℕ
0
567
523
182
deccl
⊢
423
∈
ℕ
0
568
eqid
⊢
2266
=
2266
569
eqid
⊢
4233
=
4233
570
eqid
⊢
226
=
226
571
eqid
⊢
423
=
423
572
113
197
289
addcomli
⊢
2
+
4
=
6
573
181
181
24
181
562
526
572
529
decadd
⊢
22
+
42
=
64
574
556
98
523
182
570
571
573
233
decadd
⊢
226
+
423
=
649
575
566
98
567
182
568
569
574
233
decadd
⊢
2266
+
4233
=
6499
576
556
98
98
523
182
100
182
53
53
575
dpadd3
⊢
22
.
66
+
42
.
33
=
64
.
99
577
496
nn0cni
⊢
20
∈
ℂ
578
181
51
181
561
553
decaddi
⊢
20
+
2
=
22
579
577
197
578
addcomli
⊢
2
+
20
=
22
580
181
181
496
24
562
527
579
572
decadd
⊢
22
+
204
=
226
581
556
24
524
181
560
525
580
289
decadd
⊢
224
+
2042
=
2266
582
181
181
24
496
24
556
181
98
98
581
dpadd3
⊢
2
.
24
+
20
.
42
=
22
.
66
583
582
oveq1i
⊢
2
.
24
+
20
.
42
+
42
.
33
=
22
.
66
+
42
.
33
584
eqid
⊢
51
=
51
585
1
98
54
1
135
584
257
140
decadd
⊢
16
+
51
=
67
586
1
98
54
1
98
52
585
dpadd
⊢
1
.
6
+
5
.
1
=
6
.
7
587
eqid
⊢
83
=
83
588
1
24
73
182
268
587
440
302
decadd
⊢
14
+
83
=
97
589
1
24
73
182
53
52
588
dpadd
⊢
1
.
4
+
8
.
3
=
9
.
7
590
586
589
oveq12i
⊢
1
.
6
+
5
.
1
⁢
1
.
4
+
8
.
3
=
6
.
7
⋅
9
.
7
591
9t6e54
⊢
9
⋅
6
=
54
592
196
110
591
mulcomli
⊢
6
⋅
9
=
54
593
7t6e42
⊢
7
⋅
6
=
42
594
217
110
593
mulcomli
⊢
6
⋅
7
=
42
595
7t7e49
⊢
7
⋅
7
=
49
596
eqid
⊢
63
=
63
597
3p2e5
⊢
3
+
2
=
5
598
98
182
24
181
596
526
448
597
decadd
⊢
63
+
42
=
105
599
598
oveq1i
⊢
63
+
42
+
4
=
105
+
4
600
5p4e9
⊢
5
+
4
=
9
601
130
54
24
502
600
decaddi
⊢
105
+
4
=
109
602
599
601
eqtri
⊢
63
+
42
+
4
=
109
603
eqid
⊢
54
=
54
604
54
24
1
51
603
414
246
426
decadd
⊢
54
+
10
=
64
605
98
52
53
52
24
130
53
53
592
594
437
595
602
604
dpmul
⊢
6
.
7
⋅
9
.
7
=
64
.
99
606
590
605
eqtri
⊢
1
.
6
+
5
.
1
⁢
1
.
4
+
8
.
3
=
64
.
99
607
576
583
606
3eqtr4ri
⊢
1
.
6
+
5
.
1
⁢
1
.
4
+
8
.
3
=
2
.
24
+
20
.
42
+
42
.
33
608
1
98
54
1
1
73
181
24
24
182
181
496
24
181
523
182
182
181
51
73
24
181
24
24
53
101
184
184
530
534
555
565
607
dpmul4
⊢
1
.
651
⋅
1
.
483
<
2
.
449
609
33
345
remulcli
⊢
1
.
079955
2
⋅
1
.
414
⁢
1
.
4263
⋅
1
.
03883
∈
ℝ
610
43
350
remulcli
⊢
1
.
651
⋅
1
.
483
∈
ℝ
611
24
399
rpdp2cl
⊢
49
∈
ℝ
+
612
24
611
rpdp2cl
⊢
449
∈
ℝ
+
613
181
612
rpdpcl
⊢
2
.
449
∈
ℝ
+
614
rpre
⊢
2
.
449
∈
ℝ
+
→
2
.
449
∈
ℝ
615
613
614
ax-mp
⊢
2
.
449
∈
ℝ
616
609
610
615
lttri
⊢
1
.
079955
2
⋅
1
.
414
⁢
1
.
4263
⋅
1
.
03883
<
1
.
651
⋅
1
.
483
∧
1
.
651
⋅
1
.
483
<
2
.
449
→
1
.
079955
2
⋅
1
.
414
⁢
1
.
4263
⋅
1
.
03883
<
2
.
449
617
522
608
616
mp2an
⊢
1
.
079955
2
⋅
1
.
414
⁢
1
.
4263
⋅
1
.
03883
<
2
.
449
618
3pos
⊢
0
<
3
619
609
615
319
ltmul2i
⊢
0
<
3
→
1
.
079955
2
⋅
1
.
414
⁢
1
.
4263
⋅
1
.
03883
<
2
.
449
↔
3
⁢
1
.
079955
2
⋅
1
.
414
⁢
1
.
4263
⋅
1
.
03883
<
3
⋅
2
.
449
620
618
619
ax-mp
⊢
1
.
079955
2
⋅
1
.
414
⁢
1
.
4263
⋅
1
.
03883
<
2
.
449
↔
3
⁢
1
.
079955
2
⋅
1
.
414
⁢
1
.
4263
⋅
1
.
03883
<
3
⋅
2
.
449
621
617
620
mpbi
⊢
3
⁢
1
.
079955
2
⋅
1
.
414
⁢
1
.
4263
⋅
1
.
03883
<
3
⋅
2
.
449
622
119
dp2eq2i
⊢
000
=
00
623
622
119
eqtri
⊢
000
=
0
624
623
oveq2i
⊢
3
.
000
=
3
.
0
625
182
dp0u
⊢
3
.
0
=
3
626
624
625
eqtr2i
⊢
3
=
3
.
000
627
626
oveq1i
⊢
3
⋅
2
.
449
=
3
.
000
⋅
2
.
449
628
450
52
deccl
⊢
147
∈
ℕ
0
629
628
51
deccl
⊢
1470
∈
ℕ
0
630
629
nn0cni
⊢
1470
∈
ℂ
631
630
addid1i
⊢
1470
+
0
=
1470
632
4t3e12
⊢
4
⋅
3
=
12
633
113
430
632
mulcomli
⊢
3
⋅
4
=
12
634
197
mul02i
⊢
0
⋅
2
=
0
635
113
457
425
mulcomli
⊢
0
⋅
4
=
00
636
51
51
1
181
424
300
153
553
decadd
⊢
0
+
12
=
12
637
636
oveq1i
⊢
0
+
12
+
0
=
12
+
0
638
281
nn0cni
⊢
12
∈
ℂ
639
638
addid1i
⊢
12
+
0
=
12
640
637
639
eqtri
⊢
0
+
12
+
0
=
12
641
182
51
181
24
51
1
181
51
431
633
634
635
640
140
dpmul
⊢
3
.
0
⋅
2
.
4
=
7
.
20
642
51
dp0u
⊢
0
.
0
=
0
643
642
oveq1i
⊢
0
.
0
⋅
4
.
9
=
0
⋅
4
.
9
644
dpcl
⊢
4
∈
ℕ
0
∧
9
∈
ℝ
→
4
.
9
∈
ℝ
645
24
4
644
mp2an
⊢
4
.
9
∈
ℝ
646
645
recni
⊢
4
.
9
∈
ℂ
647
646
mul02i
⊢
0
⋅
4
.
9
=
0
648
643
647
eqtri
⊢
0
.
0
⋅
4
.
9
=
0
649
119
oveq2i
⊢
0
.
00
=
0
.
0
650
649
642
eqtri
⊢
0
.
00
=
0
651
648
650
eqtr4i
⊢
0
.
0
⋅
4
.
9
=
0
.
00
652
52
181
deccl
⊢
72
∈
ℕ
0
653
652
51
deccl
⊢
720
∈
ℕ
0
654
eqid
⊢
7201
=
7201
655
eqid
⊢
147
=
147
656
eqid
⊢
720
=
720
657
52
181
224
263
decsuc
⊢
72
+
1
=
73
658
652
51
1
24
656
268
657
114
decadd
⊢
720
+
14
=
734
659
653
1
450
52
654
655
658
274
decadd
⊢
7201
+
147
=
7348
660
642
oveq2i
⊢
3
.
0
+
0
.
0
=
3
.
0
+
0
661
625
430
eqeltri
⊢
3
.
0
∈
ℂ
662
661
addid1i
⊢
3
.
0
+
0
=
3
.
0
663
660
662
eqtri
⊢
3
.
0
+
0
.
0
=
3
.
0
664
eqid
⊢
49
=
49
665
572
oveq1i
⊢
2
+
4
+
1
=
6
+
1
666
665
140
eqtri
⊢
2
+
4
+
1
=
7
667
9p4e13
⊢
9
+
4
=
13
668
196
113
667
addcomli
⊢
4
+
9
=
13
669
181
24
24
53
223
664
666
182
668
decaddc
⊢
24
+
49
=
73
670
181
24
24
53
52
182
669
dpadd
⊢
2
.
4
+
4
.
9
=
7
.
3
671
663
670
oveq12i
⊢
3
.
0
+
0
.
0
⁢
2
.
4
+
4
.
9
=
3
.
0
⋅
7
.
3
672
217
430
435
mulcomli
⊢
3
⋅
7
=
21
673
3t3e9
⊢
3
⋅
3
=
9
674
217
mul01i
⊢
7
⋅
0
=
0
675
217
457
674
mulcomli
⊢
0
⋅
7
=
0
676
430
mul01i
⊢
3
⋅
0
=
0
677
676
424
eqtri
⊢
3
⋅
0
=
00
678
430
457
677
mulcomli
⊢
0
⋅
3
=
00
679
196
addid1i
⊢
9
+
0
=
9
680
679
oveq1i
⊢
9
+
0
+
0
=
9
+
0
681
680
679
188
3eqtri
⊢
9
+
0
+
0
=
09
682
196
457
addcomi
⊢
9
+
0
=
0
+
9
683
682
oveq1i
⊢
9
+
0
+
0
=
0
+
9
+
0
684
683
eqeq1i
⊢
9
+
0
+
0
=
09
↔
0
+
9
+
0
=
09
685
681
684
mpbi
⊢
0
+
9
+
0
=
09
686
181
1
51
438
192
decaddi
⊢
21
+
0
=
21
687
182
51
52
182
51
51
53
51
672
673
675
678
685
686
dpmul
⊢
3
.
0
⋅
7
.
3
=
21
.
90
688
671
687
eqtri
⊢
3
.
0
+
0
.
0
⁢
2
.
4
+
4
.
9
=
21
.
90
689
650
oveq2i
⊢
7
.
20
+
14
.
70
+
0
.
00
=
7
.
20
+
14
.
70
+
0
690
318
2
pm3.2i
⊢
2
∈
ℝ
∧
0
∈
ℝ
691
dp2cl
⊢
2
∈
ℝ
∧
0
∈
ℝ
→
20
∈
ℝ
692
690
691
ax-mp
⊢
20
∈
ℝ
693
dpcl
⊢
7
∈
ℕ
0
∧
20
∈
ℝ
→
7
.
20
∈
ℝ
694
52
692
693
mp2an
⊢
7
.
20
∈
ℝ
695
694
recni
⊢
7
.
20
∈
ℂ
696
3
2
pm3.2i
⊢
7
∈
ℝ
∧
0
∈
ℝ
697
dp2cl
⊢
7
∈
ℝ
∧
0
∈
ℝ
→
70
∈
ℝ
698
696
697
ax-mp
⊢
70
∈
ℝ
699
dpcl
⊢
14
∈
ℕ
0
∧
70
∈
ℝ
→
14
.
70
∈
ℝ
700
450
698
699
mp2an
⊢
14
.
70
∈
ℝ
701
700
recni
⊢
14
.
70
∈
ℂ
702
695
701
addcli
⊢
7
.
20
+
14
.
70
∈
ℂ
703
702
addid1i
⊢
7
.
20
+
14
.
70
+
0
=
7
.
20
+
14
.
70
704
eqid
⊢
1470
=
1470
705
450
nn0cni
⊢
14
∈
ℂ
706
705
217
270
addcomli
⊢
7
+
14
=
21
707
7p2e9
⊢
7
+
2
=
9
708
217
197
707
addcomli
⊢
2
+
7
=
9
709
52
181
450
52
263
655
706
708
decadd
⊢
72
+
147
=
219
710
00id
⊢
0
+
0
=
0
711
652
51
628
51
656
704
709
710
decadd
⊢
720
+
1470
=
2190
712
52
181
51
450
52
293
51
53
51
711
dpadd3
⊢
7
.
20
+
14
.
70
=
21
.
90
713
689
703
712
3eqtri
⊢
7
.
20
+
14
.
70
+
0
.
00
=
21
.
90
714
688
713
eqtr4i
⊢
3
.
0
+
0
.
0
⁢
2
.
4
+
4
.
9
=
7
.
20
+
14
.
70
+
0
.
00
715
182
51
51
51
181
24
181
51
24
53
52
450
52
51
51
51
51
1
24
52
51
52
182
24
73
102
102
102
631
641
651
659
714
dpmul4
⊢
3
.
000
⋅
2
.
449
<
7
.
348
716
627
715
eqbrtri
⊢
3
⋅
2
.
449
<
7
.
348
717
319
609
remulcli
⊢
3
⁢
1
.
079955
2
⋅
1
.
414
⁢
1
.
4263
⋅
1
.
03883
∈
ℝ
718
319
615
remulcli
⊢
3
⋅
2
.
449
∈
ℝ
719
nnrp
⊢
8
∈
ℕ
→
8
∈
ℝ
+
720
63
719
ax-mp
⊢
8
∈
ℝ
+
721
24
720
rpdp2cl
⊢
48
∈
ℝ
+
722
182
721
rpdp2cl
⊢
348
∈
ℝ
+
723
52
722
rpdpcl
⊢
7
.
348
∈
ℝ
+
724
rpre
⊢
7
.
348
∈
ℝ
+
→
7
.
348
∈
ℝ
725
723
724
ax-mp
⊢
7
.
348
∈
ℝ
726
717
718
725
lttri
⊢
3
⁢
1
.
079955
2
⋅
1
.
414
⁢
1
.
4263
⋅
1
.
03883
<
3
⋅
2
.
449
∧
3
⋅
2
.
449
<
7
.
348
→
3
⁢
1
.
079955
2
⋅
1
.
414
⁢
1
.
4263
⋅
1
.
03883
<
7
.
348
727
621
716
726
mp2an
⊢
3
⁢
1
.
079955
2
⋅
1
.
414
⁢
1
.
4263
⋅
1
.
03883
<
7
.
348