Metamath Proof Explorer


Theorem hgt750lemc

Description: An upper bound to the summatory function of the von Mangoldt function. (Contributed by Thierry Arnoux, 29-Dec-2021)

Ref Expression
Hypothesis hgt750lemc.n φ N
Assertion hgt750lemc φ j = 1 N Λ j < 1.03883 N

Proof

Step Hyp Ref Expression
1 hgt750lemc.n φ N
2 1 nnzd φ N
3 chpvalz N ψ N = j = 1 N Λ j
4 2 3 syl φ ψ N = j = 1 N Λ j
5 fveq2 x = N ψ x = ψ N
6 oveq2 x = N 1.03883 x = 1.03883 N
7 5 6 breq12d x = N ψ x < 1.03883 x ψ N < 1.03883 N
8 ax-ros335 x + ψ x < 1.03883 x
9 8 a1i φ x + ψ x < 1.03883 x
10 1 nnrpd φ N +
11 7 9 10 rspcdva φ ψ N < 1.03883 N
12 4 11 eqbrtrrd φ j = 1 N Λ j < 1.03883 N