Metamath Proof Explorer


Theorem hgt750lemd

Description: An upper bound to the summatory function of the von Mangoldt function on non-primes. (Contributed by Thierry Arnoux, 29-Dec-2021)

Ref Expression
Hypotheses hgt750lemc.n φ N
hgt750lemd.0 φ 10 27 N
Assertion hgt750lemd φ i 1 N 2 Λ i < 1.4263 N

Proof

Step Hyp Ref Expression
1 hgt750lemc.n φ N
2 hgt750lemd.0 φ 10 27 N
3 fzfid φ 1 N Fin
4 diffi 1 N Fin 1 N Fin
5 3 4 syl φ 1 N Fin
6 vmaf Λ :
7 6 a1i φ i 1 N Λ :
8 fz1ssnn 1 N
9 8 a1i φ 1 N
10 9 ssdifssd φ 1 N
11 10 sselda φ i 1 N i
12 7 11 ffvelrnd φ i 1 N Λ i
13 5 12 fsumrecl φ i 1 N Λ i
14 2rp 2 +
15 14 a1i φ 2 +
16 15 relogcld φ log 2
17 1nn0 1 0
18 4re 4
19 2re 2
20 6re 6
21 20 19 pm3.2i 6 2
22 dp2cl 6 2 62
23 21 22 ax-mp 62
24 19 23 pm3.2i 2 62
25 dp2cl 2 62 262
26 24 25 ax-mp 262
27 18 26 pm3.2i 4 262
28 dp2cl 4 262 4262
29 27 28 ax-mp 4262
30 dpcl 1 0 4262 1.4262
31 17 29 30 mp2an 1.4262
32 31 a1i φ 1.4262
33 1 nnred φ N
34 1 nnrpd φ N +
35 34 rpge0d φ 0 N
36 33 35 resqrtcld φ N
37 32 36 remulcld φ 1.4262 N
38 0nn0 0 0
39 0re 0
40 1re 1
41 39 40 pm3.2i 0 1
42 dp2cl 0 1 01
43 41 42 ax-mp 01
44 39 43 pm3.2i 0 01
45 dp2cl 0 01 001
46 44 45 ax-mp 001
47 39 46 pm3.2i 0 001
48 dp2cl 0 001 0001
49 47 48 ax-mp 0001
50 dpcl 0 0 0001 0.0001
51 38 49 50 mp2an 0.0001
52 51 a1i φ 0.0001
53 52 36 remulcld φ 0.0001 N
54 1 nnzd φ N
55 chpvalz N ψ N = i = 1 N Λ i
56 54 55 syl φ ψ N = i = 1 N Λ i
57 chtvalz N θ N = i 1 N log i
58 54 57 syl φ θ N = i 1 N log i
59 inss2 1 N
60 59 a1i φ 1 N
61 60 sselda φ i 1 N i
62 vmaprm i Λ i = log i
63 61 62 syl φ i 1 N Λ i = log i
64 63 sumeq2dv φ i 1 N Λ i = i 1 N log i
65 58 64 eqtr4d φ θ N = i 1 N Λ i
66 56 65 oveq12d φ ψ N θ N = i = 1 N Λ i i 1 N Λ i
67 infi 1 N Fin 1 N Fin
68 3 67 syl φ 1 N Fin
69 6 a1i φ i 1 N Λ :
70 inss1 1 N 1 N
71 70 8 sstri 1 N
72 71 a1i φ 1 N
73 72 sselda φ i 1 N i
74 69 73 ffvelrnd φ i 1 N Λ i
75 74 recnd φ i 1 N Λ i
76 68 75 fsumcl φ i 1 N Λ i
77 12 recnd φ i 1 N Λ i
78 5 77 fsumcl φ i 1 N Λ i
79 inindif 1 N 1 N =
80 79 a1i φ 1 N 1 N =
81 inundif 1 N 1 N = 1 N
82 81 eqcomi 1 N = 1 N 1 N
83 82 a1i φ 1 N = 1 N 1 N
84 6 a1i φ i 1 N Λ :
85 9 sselda φ i 1 N i
86 84 85 ffvelrnd φ i 1 N Λ i
87 86 recnd φ i 1 N Λ i
88 80 83 3 87 fsumsplit φ i = 1 N Λ i = i 1 N Λ i + i 1 N Λ i
89 76 78 88 mvrladdd φ i = 1 N Λ i i 1 N Λ i = i 1 N Λ i
90 66 89 eqtr2d φ i 1 N Λ i = ψ N θ N
91 fveq2 x = N ψ x = ψ N
92 fveq2 x = N θ x = θ N
93 91 92 oveq12d x = N ψ x θ x = ψ N θ N
94 fveq2 x = N x = N
95 94 oveq2d x = N 1.4262 x = 1.4262 N
96 93 95 breq12d x = N ψ x θ x < 1.4262 x ψ N θ N < 1.4262 N
97 ax-ros336 x + ψ x θ x < 1.4262 x
98 97 a1i φ x + ψ x θ x < 1.4262 x
99 96 98 34 rspcdva φ ψ N θ N < 1.4262 N
100 90 99 eqbrtrd φ i 1 N Λ i < 1.4262 N
101 40 a1i φ 1
102 log2le1 log 2 < 1
103 102 a1i φ log 2 < 1
104 10nn0 10 0
105 7nn0 7 0
106 104 105 nn0expcli 10 7 0
107 106 nn0rei 10 7
108 107 a1i φ 10 7
109 52 108 remulcld φ 0.0001 10 7
110 104 nn0rei 10
111 0z 0
112 3z 3
113 110 111 112 3pm3.2i 10 0 3
114 1lt10 1 < 10
115 3pos 0 < 3
116 114 115 pm3.2i 1 < 10 0 < 3
117 ltexp2a 10 0 3 1 < 10 0 < 3 10 0 < 10 3
118 113 116 117 mp2an 10 0 < 10 3
119 104 numexp0 10 0 = 1
120 119 eqcomi 1 = 10 0
121 110 recni 10
122 10pos 0 < 10
123 39 122 gtneii 10 0
124 4z 4
125 expm1 10 10 0 4 10 4 1 = 10 4 10
126 121 123 124 125 mp3an 10 4 1 = 10 4 10
127 4m1e3 4 1 = 3
128 127 oveq2i 10 4 1 = 10 3
129 4nn0 4 0
130 104 129 nn0expcli 10 4 0
131 130 nn0cni 10 4
132 divrec2 10 4 10 10 0 10 4 10 = 1 10 10 4
133 131 121 123 132 mp3an 10 4 10 = 1 10 10 4
134 126 128 133 3eqtr3ri 1 10 10 4 = 10 3
135 118 120 134 3brtr4i 1 < 1 10 10 4
136 1rp 1 +
137 136 dp0h 0.1 = 1 10
138 137 oveq1i 0.1 10 4 = 1 10 10 4
139 135 138 breqtrri 1 < 0.1 10 4
140 139 a1i φ 1 < 0.1 10 4
141 4p1e5 4 + 1 = 5
142 5nn0 5 0
143 142 nn0zi 5
144 38 136 141 124 143 dpexpp1 0.1 10 4 = 0.01 10 5
145 38 136 rpdp2cl 01 +
146 5p1e6 5 + 1 = 6
147 6nn0 6 0
148 147 nn0zi 6
149 38 145 146 143 148 dpexpp1 0.01 10 5 = 0.001 10 6
150 38 145 rpdp2cl 001 +
151 6p1e7 6 + 1 = 7
152 105 nn0zi 7
153 38 150 151 148 152 dpexpp1 0.001 10 6 = 0.0001 10 7
154 144 149 153 3eqtrri 0.0001 10 7 = 0.1 10 4
155 140 154 breqtrrdi φ 1 < 0.0001 10 7
156 38 150 rpdp2cl 0001 +
157 38 156 rpdpcl 0.0001 +
158 157 a1i φ 0.0001 +
159 2nn0 2 0
160 159 105 deccl 27 0
161 104 160 nn0expcli 10 27 0
162 161 nn0rei 10 27
163 162 a1i φ 10 27
164 161 nn0ge0i 0 10 27
165 164 a1i φ 0 10 27
166 163 165 resqrtcld φ 10 27
167 expmul 10 7 0 2 0 10 7 2 = 10 7 2
168 121 105 159 167 mp3an 10 7 2 = 10 7 2
169 7t2e14 7 2 = 14
170 169 oveq2i 10 7 2 = 10 14
171 168 170 eqtr3i 10 7 2 = 10 14
172 171 fveq2i 10 7 2 = 10 14
173 expgt0 10 7 0 < 10 0 < 10 7
174 110 152 122 173 mp3an 0 < 10 7
175 39 107 174 ltleii 0 10 7
176 sqrtsq 10 7 0 10 7 10 7 2 = 10 7
177 107 175 176 mp2an 10 7 2 = 10 7
178 172 177 eqtr3i 10 14 = 10 7
179 17 129 deccl 14 0
180 179 nn0zi 14
181 160 nn0zi 27
182 110 180 181 3pm3.2i 10 14 27
183 4lt10 4 < 10
184 1lt2 1 < 2
185 17 159 129 105 183 184 decltc 14 < 27
186 114 185 pm3.2i 1 < 10 14 < 27
187 ltexp2a 10 14 27 1 < 10 14 < 27 10 14 < 10 27
188 182 186 187 mp2an 10 14 < 10 27
189 104 179 nn0expcli 10 14 0
190 189 nn0rei 10 14
191 expgt0 10 14 0 < 10 0 < 10 14
192 110 180 122 191 mp3an 0 < 10 14
193 39 190 192 ltleii 0 10 14
194 190 193 pm3.2i 10 14 0 10 14
195 162 164 pm3.2i 10 27 0 10 27
196 sqrtlt 10 14 0 10 14 10 27 0 10 27 10 14 < 10 27 10 14 < 10 27
197 194 195 196 mp2an 10 14 < 10 27 10 14 < 10 27
198 188 197 mpbi 10 14 < 10 27
199 178 198 eqbrtrri 10 7 < 10 27
200 199 a1i φ 10 7 < 10 27
201 163 165 33 35 sqrtled φ 10 27 N 10 27 N
202 2 201 mpbid φ 10 27 N
203 108 166 36 200 202 ltletrd φ 10 7 < N
204 108 36 158 203 ltmul2dd φ 0.0001 10 7 < 0.0001 N
205 101 109 53 155 204 lttrd φ 1 < 0.0001 N
206 16 101 53 103 205 lttrd φ log 2 < 0.0001 N
207 13 16 37 53 100 206 lt2addd φ i 1 N Λ i + log 2 < 1.4262 N + 0.0001 N
208 nfv i φ
209 nfcv _ i log 2
210 2prm 2
211 210 a1i φ 2
212 elndif 2 ¬ 2 1 N
213 211 212 syl φ ¬ 2 1 N
214 fveq2 i = 2 Λ i = Λ 2
215 vmaprm 2 Λ 2 = log 2
216 210 215 ax-mp Λ 2 = log 2
217 214 216 eqtrdi i = 2 Λ i = log 2
218 2cnd φ 2
219 2ne0 2 0
220 219 a1i φ 2 0
221 218 220 logcld φ log 2
222 208 209 5 211 213 77 217 221 fsumsplitsn φ i 1 N 2 Λ i = i 1 N Λ i + log 2
223 147 14 rpdp2cl 62 +
224 159 223 rpdp2cl 262 +
225 3rp 3 +
226 147 225 rpdp2cl 63 +
227 159 226 rpdp2cl 263 +
228 1p0e1 1 + 0 = 1
229 4cn 4
230 229 addid1i 4 + 0 = 4
231 2cn 2
232 231 addid1i 2 + 0 = 2
233 3nn0 3 0
234 eqid 62 = 62
235 eqid 01 = 01
236 6cn 6
237 236 addid1i 6 + 0 = 6
238 2p1e3 2 + 1 = 3
239 147 159 38 17 234 235 237 238 decadd 62 + 01 = 63
240 147 159 38 17 147 233 239 dpadd 6.2 + 0.1 = 6.3
241 147 14 38 136 147 225 159 38 232 240 dpadd2 2.62 + 0.01 = 2.63
242 159 223 38 145 159 226 129 38 230 241 dpadd2 4.262 + 0.001 = 4.263
243 129 224 38 150 129 227 17 38 228 242 dpadd2 1.4262 + 0.0001 = 1.4263
244 243 oveq1i 1.4262 + 0.0001 N = 1.4263 N
245 32 recnd φ 1.4262
246 52 recnd φ 0.0001
247 36 recnd φ N
248 245 246 247 adddird φ 1.4262 + 0.0001 N = 1.4262 N + 0.0001 N
249 244 248 eqtr3id φ 1.4263 N = 1.4262 N + 0.0001 N
250 207 222 249 3brtr4d φ i 1 N 2 Λ i < 1.4263 N