Metamath Proof Explorer


Theorem hgt750lemf

Description: Lemma for the statement 7.50 of Helfgott p. 69. (Contributed by Thierry Arnoux, 1-Jan-2022)

Ref Expression
Hypotheses hgt750lemf.a φ A Fin
hgt750lemf.p φ P
hgt750lemf.q φ Q
hgt750lemf.h φ H : 0 +∞
hgt750lemf.k φ K : 0 +∞
hgt750lemf.0 φ n A n 0
hgt750lemf.1 φ n A n 1
hgt750lemf.2 φ n A n 2
hgt750lemf.3 φ m K m P
hgt750lemf.4 φ m H m Q
Assertion hgt750lemf φ n A Λ n 0 H n 0 Λ n 1 K n 1 Λ n 2 K n 2 P 2 Q n A Λ n 0 Λ n 1 Λ n 2

Proof

Step Hyp Ref Expression
1 hgt750lemf.a φ A Fin
2 hgt750lemf.p φ P
3 hgt750lemf.q φ Q
4 hgt750lemf.h φ H : 0 +∞
5 hgt750lemf.k φ K : 0 +∞
6 hgt750lemf.0 φ n A n 0
7 hgt750lemf.1 φ n A n 1
8 hgt750lemf.2 φ n A n 2
9 hgt750lemf.3 φ m K m P
10 hgt750lemf.4 φ m H m Q
11 vmaf Λ :
12 11 a1i φ n A Λ :
13 12 6 ffvelrnd φ n A Λ n 0
14 rge0ssre 0 +∞
15 4 adantr φ n A H : 0 +∞
16 15 6 ffvelrnd φ n A H n 0 0 +∞
17 14 16 sselid φ n A H n 0
18 13 17 remulcld φ n A Λ n 0 H n 0
19 12 7 ffvelrnd φ n A Λ n 1
20 5 adantr φ n A K : 0 +∞
21 20 7 ffvelrnd φ n A K n 1 0 +∞
22 14 21 sselid φ n A K n 1
23 19 22 remulcld φ n A Λ n 1 K n 1
24 12 8 ffvelrnd φ n A Λ n 2
25 20 8 ffvelrnd φ n A K n 2 0 +∞
26 14 25 sselid φ n A K n 2
27 24 26 remulcld φ n A Λ n 2 K n 2
28 23 27 remulcld φ n A Λ n 1 K n 1 Λ n 2 K n 2
29 18 28 remulcld φ n A Λ n 0 H n 0 Λ n 1 K n 1 Λ n 2 K n 2
30 2 resqcld φ P 2
31 30 3 remulcld φ P 2 Q
32 31 adantr φ n A P 2 Q
33 19 24 remulcld φ n A Λ n 1 Λ n 2
34 13 33 remulcld φ n A Λ n 0 Λ n 1 Λ n 2
35 32 34 remulcld φ n A P 2 Q Λ n 0 Λ n 1 Λ n 2
36 13 recnd φ n A Λ n 0
37 33 recnd φ n A Λ n 1 Λ n 2
38 17 recnd φ n A H n 0
39 22 26 remulcld φ n A K n 1 K n 2
40 39 recnd φ n A K n 1 K n 2
41 36 37 38 40 mul4d φ n A Λ n 0 Λ n 1 Λ n 2 H n 0 K n 1 K n 2 = Λ n 0 H n 0 Λ n 1 Λ n 2 K n 1 K n 2
42 36 37 mulcld φ n A Λ n 0 Λ n 1 Λ n 2
43 38 40 mulcld φ n A H n 0 K n 1 K n 2
44 42 43 mulcomd φ n A Λ n 0 Λ n 1 Λ n 2 H n 0 K n 1 K n 2 = H n 0 K n 1 K n 2 Λ n 0 Λ n 1 Λ n 2
45 19 recnd φ n A Λ n 1
46 24 recnd φ n A Λ n 2
47 22 recnd φ n A K n 1
48 26 recnd φ n A K n 2
49 45 46 47 48 mul4d φ n A Λ n 1 Λ n 2 K n 1 K n 2 = Λ n 1 K n 1 Λ n 2 K n 2
50 49 oveq2d φ n A Λ n 0 H n 0 Λ n 1 Λ n 2 K n 1 K n 2 = Λ n 0 H n 0 Λ n 1 K n 1 Λ n 2 K n 2
51 41 44 50 3eqtr3d φ n A H n 0 K n 1 K n 2 Λ n 0 Λ n 1 Λ n 2 = Λ n 0 H n 0 Λ n 1 K n 1 Λ n 2 K n 2
52 17 39 remulcld φ n A H n 0 K n 1 K n 2
53 vmage0 n 0 0 Λ n 0
54 6 53 syl φ n A 0 Λ n 0
55 vmage0 n 1 0 Λ n 1
56 7 55 syl φ n A 0 Λ n 1
57 vmage0 n 2 0 Λ n 2
58 8 57 syl φ n A 0 Λ n 2
59 19 24 56 58 mulge0d φ n A 0 Λ n 1 Λ n 2
60 13 33 54 59 mulge0d φ n A 0 Λ n 0 Λ n 1 Λ n 2
61 3 adantr φ n A Q
62 2 2 remulcld φ P P
63 62 adantr φ n A P P
64 0xr 0 *
65 64 a1i φ n A 0 *
66 pnfxr +∞ *
67 66 a1i φ n A +∞ *
68 icogelb 0 * +∞ * H n 0 0 +∞ 0 H n 0
69 65 67 16 68 syl3anc φ n A 0 H n 0
70 icogelb 0 * +∞ * K n 1 0 +∞ 0 K n 1
71 65 67 21 70 syl3anc φ n A 0 K n 1
72 icogelb 0 * +∞ * K n 2 0 +∞ 0 K n 2
73 65 67 25 72 syl3anc φ n A 0 K n 2
74 22 26 71 73 mulge0d φ n A 0 K n 1 K n 2
75 fveq2 m = n 0 H m = H n 0
76 75 breq1d m = n 0 H m Q H n 0 Q
77 10 ralrimiva φ m H m Q
78 77 adantr φ n A m H m Q
79 76 78 6 rspcdva φ n A H n 0 Q
80 2 adantr φ n A P
81 fveq2 m = n 1 K m = K n 1
82 81 breq1d m = n 1 K m P K n 1 P
83 9 ralrimiva φ m K m P
84 83 adantr φ n A m K m P
85 82 84 7 rspcdva φ n A K n 1 P
86 fveq2 m = n 2 K m = K n 2
87 86 breq1d m = n 2 K m P K n 2 P
88 87 84 8 rspcdva φ n A K n 2 P
89 22 80 26 80 71 73 85 88 lemul12ad φ n A K n 1 K n 2 P P
90 17 61 39 63 69 74 79 89 lemul12ad φ n A H n 0 K n 1 K n 2 Q P P
91 30 recnd φ P 2
92 3 recnd φ Q
93 91 92 mulcomd φ P 2 Q = Q P 2
94 2 recnd φ P
95 94 sqvald φ P 2 = P P
96 95 oveq2d φ Q P 2 = Q P P
97 93 96 eqtrd φ P 2 Q = Q P P
98 97 adantr φ n A P 2 Q = Q P P
99 90 98 breqtrrd φ n A H n 0 K n 1 K n 2 P 2 Q
100 52 32 34 60 99 lemul1ad φ n A H n 0 K n 1 K n 2 Λ n 0 Λ n 1 Λ n 2 P 2 Q Λ n 0 Λ n 1 Λ n 2
101 51 100 eqbrtrrd φ n A Λ n 0 H n 0 Λ n 1 K n 1 Λ n 2 K n 2 P 2 Q Λ n 0 Λ n 1 Λ n 2
102 1 29 35 101 fsumle φ n A Λ n 0 H n 0 Λ n 1 K n 1 Λ n 2 K n 2 n A P 2 Q Λ n 0 Λ n 1 Λ n 2
103 31 recnd φ P 2 Q
104 34 recnd φ n A Λ n 0 Λ n 1 Λ n 2
105 1 103 104 fsummulc2 φ P 2 Q n A Λ n 0 Λ n 1 Λ n 2 = n A P 2 Q Λ n 0 Λ n 1 Λ n 2
106 102 105 breqtrrd φ n A Λ n 0 H n 0 Λ n 1 K n 1 Λ n 2 K n 2 P 2 Q n A Λ n 0 Λ n 1 Λ n 2