Metamath Proof Explorer


Theorem hgt750lemg

Description: Lemma for the statement 7.50 of Helfgott p. 69. Applying a permutation T to the three factors of a product does not change the result. (Contributed by Thierry Arnoux, 1-Jan-2022)

Ref Expression
Hypotheses hgt750lemg.f F = c R c T
hgt750lemg.t φ T : 0 ..^ 3 1-1 onto 0 ..^ 3
hgt750lemg.n φ N : 0 ..^ 3
hgt750lemg.l φ L :
hgt750lemg.1 φ N R
Assertion hgt750lemg φ L F N 0 L F N 1 L F N 2 = L N 0 L N 1 L N 2

Proof

Step Hyp Ref Expression
1 hgt750lemg.f F = c R c T
2 hgt750lemg.t φ T : 0 ..^ 3 1-1 onto 0 ..^ 3
3 hgt750lemg.n φ N : 0 ..^ 3
4 hgt750lemg.l φ L :
5 hgt750lemg.1 φ N R
6 2fveq3 a = T b L N a = L N T b
7 tpfi 0 1 2 Fin
8 7 a1i φ 0 1 2 Fin
9 fzo0to3tp 0 ..^ 3 = 0 1 2
10 f1oeq23 0 ..^ 3 = 0 1 2 0 ..^ 3 = 0 1 2 T : 0 ..^ 3 1-1 onto 0 ..^ 3 T : 0 1 2 1-1 onto 0 1 2
11 9 9 10 mp2an T : 0 ..^ 3 1-1 onto 0 ..^ 3 T : 0 1 2 1-1 onto 0 1 2
12 2 11 sylib φ T : 0 1 2 1-1 onto 0 1 2
13 eqidd φ b 0 1 2 T b = T b
14 4 adantr φ a 0 1 2 L :
15 3 adantr φ a 0 1 2 N : 0 ..^ 3
16 simpr φ a 0 1 2 a 0 1 2
17 16 9 eleqtrrdi φ a 0 1 2 a 0 ..^ 3
18 15 17 ffvelrnd φ a 0 1 2 N a
19 14 18 ffvelrnd φ a 0 1 2 L N a
20 19 recnd φ a 0 1 2 L N a
21 6 8 12 13 20 fprodf1o φ a 0 1 2 L N a = b 0 1 2 L N T b
22 1 a1i φ F = c R c T
23 simpr φ c = N c = N
24 23 coeq1d φ c = N c T = N T
25 f1of T : 0 ..^ 3 1-1 onto 0 ..^ 3 T : 0 ..^ 3 0 ..^ 3
26 2 25 syl φ T : 0 ..^ 3 0 ..^ 3
27 ovexd φ 0 ..^ 3 V
28 26 27 fexd φ T V
29 coexg N R T V N T V
30 5 28 29 syl2anc φ N T V
31 22 24 5 30 fvmptd φ F N = N T
32 31 adantr φ b 0 1 2 F N = N T
33 32 fveq1d φ b 0 1 2 F N b = N T b
34 f1ofun T : 0 ..^ 3 1-1 onto 0 ..^ 3 Fun T
35 2 34 syl φ Fun T
36 35 adantr φ b 0 1 2 Fun T
37 f1odm T : 0 1 2 1-1 onto 0 1 2 dom T = 0 1 2
38 12 37 syl φ dom T = 0 1 2
39 38 eleq2d φ b dom T b 0 1 2
40 39 biimpar φ b 0 1 2 b dom T
41 fvco Fun T b dom T N T b = N T b
42 36 40 41 syl2anc φ b 0 1 2 N T b = N T b
43 33 42 eqtr2d φ b 0 1 2 N T b = F N b
44 43 fveq2d φ b 0 1 2 L N T b = L F N b
45 44 prodeq2dv φ b 0 1 2 L N T b = b 0 1 2 L F N b
46 21 45 eqtr2d φ b 0 1 2 L F N b = a 0 1 2 L N a
47 2fveq3 b = 0 L F N b = L F N 0
48 2fveq3 b = 1 L F N b = L F N 1
49 c0ex 0 V
50 49 a1i φ 0 V
51 1ex 1 V
52 51 a1i φ 1 V
53 31 fveq1d φ F N 0 = N T 0
54 49 tpid1 0 0 1 2
55 54 38 eleqtrrid φ 0 dom T
56 fvco Fun T 0 dom T N T 0 = N T 0
57 35 55 56 syl2anc φ N T 0 = N T 0
58 53 57 eqtrd φ F N 0 = N T 0
59 54 9 eleqtrri 0 0 ..^ 3
60 59 a1i φ 0 0 ..^ 3
61 26 60 ffvelrnd φ T 0 0 ..^ 3
62 3 61 ffvelrnd φ N T 0
63 58 62 eqeltrd φ F N 0
64 4 63 ffvelrnd φ L F N 0
65 64 recnd φ L F N 0
66 31 fveq1d φ F N 1 = N T 1
67 51 tpid2 1 0 1 2
68 67 38 eleqtrrid φ 1 dom T
69 fvco Fun T 1 dom T N T 1 = N T 1
70 35 68 69 syl2anc φ N T 1 = N T 1
71 66 70 eqtrd φ F N 1 = N T 1
72 67 9 eleqtrri 1 0 ..^ 3
73 72 a1i φ 1 0 ..^ 3
74 26 73 ffvelrnd φ T 1 0 ..^ 3
75 3 74 ffvelrnd φ N T 1
76 71 75 eqeltrd φ F N 1
77 4 76 ffvelrnd φ L F N 1
78 77 recnd φ L F N 1
79 0ne1 0 1
80 79 a1i φ 0 1
81 2fveq3 b = 2 L F N b = L F N 2
82 2ex 2 V
83 82 a1i φ 2 V
84 31 fveq1d φ F N 2 = N T 2
85 82 tpid3 2 0 1 2
86 85 38 eleqtrrid φ 2 dom T
87 fvco Fun T 2 dom T N T 2 = N T 2
88 35 86 87 syl2anc φ N T 2 = N T 2
89 84 88 eqtrd φ F N 2 = N T 2
90 85 9 eleqtrri 2 0 ..^ 3
91 90 a1i φ 2 0 ..^ 3
92 26 91 ffvelrnd φ T 2 0 ..^ 3
93 3 92 ffvelrnd φ N T 2
94 89 93 eqeltrd φ F N 2
95 4 94 ffvelrnd φ L F N 2
96 95 recnd φ L F N 2
97 0ne2 0 2
98 97 a1i φ 0 2
99 1ne2 1 2
100 99 a1i φ 1 2
101 47 48 50 52 65 78 80 81 83 96 98 100 prodtp φ b 0 1 2 L F N b = L F N 0 L F N 1 L F N 2
102 2fveq3 a = 0 L N a = L N 0
103 2fveq3 a = 1 L N a = L N 1
104 3 60 ffvelrnd φ N 0
105 4 104 ffvelrnd φ L N 0
106 105 recnd φ L N 0
107 3 73 ffvelrnd φ N 1
108 4 107 ffvelrnd φ L N 1
109 108 recnd φ L N 1
110 2fveq3 a = 2 L N a = L N 2
111 3 91 ffvelrnd φ N 2
112 4 111 ffvelrnd φ L N 2
113 112 recnd φ L N 2
114 102 103 50 52 106 109 80 110 83 113 98 100 prodtp φ a 0 1 2 L N a = L N 0 L N 1 L N 2
115 46 101 114 3eqtr3d φ L F N 0 L F N 1 L F N 2 = L N 0 L N 1 L N 2
116 65 78 96 mulassd φ L F N 0 L F N 1 L F N 2 = L F N 0 L F N 1 L F N 2
117 106 109 113 mulassd φ L N 0 L N 1 L N 2 = L N 0 L N 1 L N 2
118 115 116 117 3eqtr3d φ L F N 0 L F N 1 L F N 2 = L N 0 L N 1 L N 2