Metamath Proof Explorer


Theorem hh0oi

Description: The zero operator in Hilbert space. (Contributed by NM, 7-Dec-2007) (New usage is discouraged.)

Ref Expression
Hypotheses hhnmo.1 U = + norm
hh0o.2 Z = U 0 op U
Assertion hh0oi 0 hop = Z

Proof

Step Hyp Ref Expression
1 hhnmo.1 U = + norm
2 hh0o.2 Z = U 0 op U
3 1 hhba = BaseSet U
4 df-ch0 0 = 0
5 1 hh0v 0 = 0 vec U
6 5 sneqi 0 = 0 vec U
7 4 6 eqtri 0 = 0 vec U
8 3 7 xpeq12i × 0 = BaseSet U × 0 vec U
9 df0op2 0 hop = × 0
10 1 hhnv U NrmCVec
11 eqid BaseSet U = BaseSet U
12 eqid 0 vec U = 0 vec U
13 11 12 2 0ofval U NrmCVec U NrmCVec Z = BaseSet U × 0 vec U
14 10 10 13 mp2an Z = BaseSet U × 0 vec U
15 8 9 14 3eqtr4i 0 hop = Z