Metamath Proof Explorer


Theorem hh0v

Description: The zero vector of Hilbert space. (Contributed by NM, 17-Nov-2007) (Revised by Mario Carneiro, 23-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypothesis hhnv.1 U = + norm
Assertion hh0v 0 = 0 vec U

Proof

Step Hyp Ref Expression
1 hhnv.1 U = + norm
2 1 hhnv U NrmCVec
3 eqid + v U = + v U
4 eqid 0 vec U = 0 vec U
5 3 4 0vfval U NrmCVec 0 vec U = GId + v U
6 2 5 ax-mp 0 vec U = GId + v U
7 1 hhva + = + v U
8 7 fveq2i GId + = GId + v U
9 hilid GId + = 0
10 6 8 9 3eqtr2ri 0 = 0 vec U