Metamath Proof Explorer


Theorem hhbloi

Description: A bounded linear operator in Hilbert space. (Contributed by NM, 19-Nov-2007) (Revised by Mario Carneiro, 19-Nov-2013) (New usage is discouraged.)

Ref Expression
Hypotheses hhnmo.1 U = + norm
hhblo.2 B = U BLnOp U
Assertion hhbloi BndLinOp = B

Proof

Step Hyp Ref Expression
1 hhnmo.1 U = + norm
2 hhblo.2 B = U BLnOp U
3 df-bdop BndLinOp = x LinOp | norm op x < +∞
4 1 hhnv U NrmCVec
5 eqid U normOp OLD U = U normOp OLD U
6 1 5 hhnmoi norm op = U normOp OLD U
7 eqid U LnOp U = U LnOp U
8 1 7 hhlnoi LinOp = U LnOp U
9 6 8 2 bloval U NrmCVec U NrmCVec B = x LinOp | norm op x < +∞
10 4 4 9 mp2an B = x LinOp | norm op x < +∞
11 3 10 eqtr4i BndLinOp = B