Metamath Proof Explorer


Theorem hhcau

Description: The Cauchy sequences of Hilbert space. (Contributed by NM, 19-Nov-2007) (New usage is discouraged.)

Ref Expression
Hypotheses hhlm.1 U = + norm
hhlm.2 D = IndMet U
Assertion hhcau Cauchy = Cau D

Proof

Step Hyp Ref Expression
1 hhlm.1 U = + norm
2 hhlm.2 D = IndMet U
3 1 hhnv U NrmCVec
4 1 hhba = BaseSet U
5 1 3 4 2 h2hcau Cauchy = Cau D