Metamath Proof Explorer


Theorem hhcmpl

Description: Lemma used for derivation of the completeness axiom ax-hcompl from ZFC Hilbert space theory. (Contributed by NM, 9-Apr-2008) (New usage is discouraged.)

Ref Expression
Hypotheses hhlm.1 U=+norm
hhlm.2 D=IndMetU
hhlm.3 J=MetOpenD
hhcmpl.c FCauDxFtJx
Assertion hhcmpl FCauchyxFvx

Proof

Step Hyp Ref Expression
1 hhlm.1 U=+norm
2 hhlm.2 D=IndMetU
3 hhlm.3 J=MetOpenD
4 hhcmpl.c FCauDxFtJx
5 4 anim1ci FCauDFFxFtJx
6 elin FCauDFCauDF
7 r19.42v xFFtJxFxFtJx
8 5 6 7 3imtr4i FCauDxFFtJx
9 1 2 hhcau Cauchy=CauD
10 9 eleq2i FCauchyFCauD
11 1 2 3 hhlm v=tJ
12 11 breqi FvxFtJx
13 vex xV
14 13 brresi FtJxFFtJx
15 12 14 bitri FvxFFtJx
16 15 rexbii xFvxxFFtJx
17 8 10 16 3imtr4i FCauchyxFvx