Metamath Proof Explorer


Theorem hhcnf

Description: The continuous functionals of Hilbert space. (Contributed by Mario Carneiro, 19-May-2014) (New usage is discouraged.)

Ref Expression
Hypotheses hhcn.1 D = norm -
hhcn.2 J = MetOpen D
hhcn.4 K = TopOpen fld
Assertion hhcnf ContFn = J Cn K

Proof

Step Hyp Ref Expression
1 hhcn.1 D = norm -
2 hhcn.2 J = MetOpen D
3 hhcn.4 K = TopOpen fld
4 df-rab t | x y + z + w norm w - x < z t w t x < y = t | t x y + z + w norm w - x < z t w t x < y
5 df-cnfn ContFn = t | x y + z + w norm w - x < z t w t x < y
6 1 hilmetdval x w x D w = norm x - w
7 normsub x w norm x - w = norm w - x
8 6 7 eqtrd x w x D w = norm w - x
9 8 adantll t : x w x D w = norm w - x
10 9 breq1d t : x w x D w < z norm w - x < z
11 ffvelrn t : x t x
12 ffvelrn t : w t w
13 11 12 anim12dan t : x w t x t w
14 eqid abs = abs
15 14 cnmetdval t x t w t x abs t w = t x t w
16 abssub t x t w t x t w = t w t x
17 15 16 eqtrd t x t w t x abs t w = t w t x
18 13 17 syl t : x w t x abs t w = t w t x
19 18 anassrs t : x w t x abs t w = t w t x
20 19 breq1d t : x w t x abs t w < y t w t x < y
21 10 20 imbi12d t : x w x D w < z t x abs t w < y norm w - x < z t w t x < y
22 21 ralbidva t : x w x D w < z t x abs t w < y w norm w - x < z t w t x < y
23 22 rexbidv t : x z + w x D w < z t x abs t w < y z + w norm w - x < z t w t x < y
24 23 ralbidv t : x y + z + w x D w < z t x abs t w < y y + z + w norm w - x < z t w t x < y
25 24 ralbidva t : x y + z + w x D w < z t x abs t w < y x y + z + w norm w - x < z t w t x < y
26 25 pm5.32i t : x y + z + w x D w < z t x abs t w < y t : x y + z + w norm w - x < z t w t x < y
27 1 hilxmet D ∞Met
28 cnxmet abs ∞Met
29 3 cnfldtopn K = MetOpen abs
30 2 29 metcn D ∞Met abs ∞Met t J Cn K t : x y + z + w x D w < z t x abs t w < y
31 27 28 30 mp2an t J Cn K t : x y + z + w x D w < z t x abs t w < y
32 cnex V
33 ax-hilex V
34 32 33 elmap t t :
35 34 anbi1i t x y + z + w norm w - x < z t w t x < y t : x y + z + w norm w - x < z t w t x < y
36 26 31 35 3bitr4i t J Cn K t x y + z + w norm w - x < z t w t x < y
37 36 abbi2i J Cn K = t | t x y + z + w norm w - x < z t w t x < y
38 4 5 37 3eqtr4i ContFn = J Cn K