Metamath Proof Explorer


Theorem hhcno

Description: The continuous operators of Hilbert space. (Contributed by Mario Carneiro, 19-May-2014) (New usage is discouraged.)

Ref Expression
Hypotheses hhcn.1 D = norm -
hhcn.2 J = MetOpen D
Assertion hhcno ContOp = J Cn J

Proof

Step Hyp Ref Expression
1 hhcn.1 D = norm -
2 hhcn.2 J = MetOpen D
3 df-rab t | x y + z + w norm w - x < z norm t w - t x < y = t | t x y + z + w norm w - x < z norm t w - t x < y
4 df-cnop ContOp = t | x y + z + w norm w - x < z norm t w - t x < y
5 1 hilmetdval x w x D w = norm x - w
6 normsub x w norm x - w = norm w - x
7 5 6 eqtrd x w x D w = norm w - x
8 7 adantll t : x w x D w = norm w - x
9 8 breq1d t : x w x D w < z norm w - x < z
10 ffvelrn t : x t x
11 ffvelrn t : w t w
12 10 11 anim12dan t : x w t x t w
13 1 hilmetdval t x t w t x D t w = norm t x - t w
14 normsub t x t w norm t x - t w = norm t w - t x
15 13 14 eqtrd t x t w t x D t w = norm t w - t x
16 12 15 syl t : x w t x D t w = norm t w - t x
17 16 anassrs t : x w t x D t w = norm t w - t x
18 17 breq1d t : x w t x D t w < y norm t w - t x < y
19 9 18 imbi12d t : x w x D w < z t x D t w < y norm w - x < z norm t w - t x < y
20 19 ralbidva t : x w x D w < z t x D t w < y w norm w - x < z norm t w - t x < y
21 20 rexbidv t : x z + w x D w < z t x D t w < y z + w norm w - x < z norm t w - t x < y
22 21 ralbidv t : x y + z + w x D w < z t x D t w < y y + z + w norm w - x < z norm t w - t x < y
23 22 ralbidva t : x y + z + w x D w < z t x D t w < y x y + z + w norm w - x < z norm t w - t x < y
24 23 pm5.32i t : x y + z + w x D w < z t x D t w < y t : x y + z + w norm w - x < z norm t w - t x < y
25 1 hilxmet D ∞Met
26 2 2 metcn D ∞Met D ∞Met t J Cn J t : x y + z + w x D w < z t x D t w < y
27 25 25 26 mp2an t J Cn J t : x y + z + w x D w < z t x D t w < y
28 ax-hilex V
29 28 28 elmap t t :
30 29 anbi1i t x y + z + w norm w - x < z norm t w - t x < y t : x y + z + w norm w - x < z norm t w - t x < y
31 24 27 30 3bitr4i t J Cn J t x y + z + w norm w - x < z norm t w - t x < y
32 31 abbi2i J Cn J = t | t x y + z + w norm w - x < z norm t w - t x < y
33 3 4 32 3eqtr4i ContOp = J Cn J