Metamath Proof Explorer


Theorem hhims

Description: The induced metric of Hilbert space. (Contributed by NM, 17-Nov-2007) (New usage is discouraged.)

Ref Expression
Hypotheses hhnv.1 U = + norm
hhims.2 D = norm -
Assertion hhims D = IndMet U

Proof

Step Hyp Ref Expression
1 hhnv.1 U = + norm
2 hhims.2 D = norm -
3 1 hhnv U NrmCVec
4 1 hhvs - = - v U
5 1 hhnm norm = norm CV U
6 eqid IndMet U = IndMet U
7 4 5 6 imsval U NrmCVec IndMet U = norm -
8 3 7 ax-mp IndMet U = norm -
9 2 8 eqtr4i D = IndMet U