Metamath Proof Explorer


Theorem hhip

Description: The inner product operation of Hilbert space. (Contributed by NM, 17-Nov-2007) (Revised by Mario Carneiro, 16-Nov-2013) (New usage is discouraged.)

Ref Expression
Hypothesis hhnv.1 U = + norm
Assertion hhip ih = 𝑖OLD U

Proof

Step Hyp Ref Expression
1 hhnv.1 U = + norm
2 polid x y x ih y = norm x + y 2 - norm x - y 2 + i norm x + i y 2 norm x - i y 2 4
3 1 hhnv U NrmCVec
4 1 hhba = BaseSet U
5 1 hhva + = + v U
6 1 hhsm = 𝑠OLD U
7 1 hhnm norm = norm CV U
8 eqid 𝑖OLD U = 𝑖OLD U
9 1 hhvs - = - v U
10 4 5 6 7 8 9 ipval3 U NrmCVec x y x 𝑖OLD U y = norm x + y 2 - norm x - y 2 + i norm x + i y 2 norm x - i y 2 4
11 3 10 mp3an1 x y x 𝑖OLD U y = norm x + y 2 - norm x - y 2 + i norm x + i y 2 norm x - i y 2 4
12 2 11 eqtr4d x y x ih y = x 𝑖OLD U y
13 12 rgen2 x y x ih y = x 𝑖OLD U y
14 ax-hfi ih : ×
15 4 8 ipf U NrmCVec 𝑖OLD U : ×
16 3 15 ax-mp 𝑖OLD U : ×
17 ffn ih : × ih Fn ×
18 ffn 𝑖OLD U : × 𝑖OLD U Fn ×
19 eqfnov2 ih Fn × 𝑖OLD U Fn × ih = 𝑖OLD U x y x ih y = x 𝑖OLD U y
20 17 18 19 syl2an ih : × 𝑖OLD U : × ih = 𝑖OLD U x y x ih y = x 𝑖OLD U y
21 14 16 20 mp2an ih = 𝑖OLD U x y x ih y = x 𝑖OLD U y
22 13 21 mpbir ih = 𝑖OLD U