Metamath Proof Explorer


Theorem hhlnoi

Description: The linear operators of Hilbert space. (Contributed by NM, 19-Nov-2007) (Revised by Mario Carneiro, 19-Nov-2013) (New usage is discouraged.)

Ref Expression
Hypotheses hhlno.1 U = + norm
hhlno.2 L = U LnOp U
Assertion hhlnoi LinOp = L

Proof

Step Hyp Ref Expression
1 hhlno.1 U = + norm
2 hhlno.2 L = U LnOp U
3 df-lnop LinOp = t | x y z t x y + z = x t y + t z
4 1 hhnv U NrmCVec
5 1 hhba = BaseSet U
6 1 hhva + = + v U
7 1 hhsm = 𝑠OLD U
8 5 5 6 6 7 7 2 lnoval U NrmCVec U NrmCVec L = t | x y z t x y + z = x t y + t z
9 4 4 8 mp2an L = t | x y z t x y + z = x t y + t z
10 3 9 eqtr4i LinOp = L