Metamath Proof Explorer


Theorem hhmet

Description: The induced metric of Hilbert space. (Contributed by NM, 10-Apr-2008) (New usage is discouraged.)

Ref Expression
Hypotheses hhnv.1 U = + norm
hhims2.2 D = IndMet U
Assertion hhmet D Met

Proof

Step Hyp Ref Expression
1 hhnv.1 U = + norm
2 hhims2.2 D = IndMet U
3 1 hhnv U NrmCVec
4 1 hhba = BaseSet U
5 4 2 imsmet U NrmCVec D Met
6 3 5 ax-mp D Met