Metamath Proof Explorer


Theorem hhnm

Description: The norm function of Hilbert space. (Contributed by NM, 17-Nov-2007) (New usage is discouraged.)

Ref Expression
Hypothesis hhnv.1 U = + norm
Assertion hhnm norm = norm CV U

Proof

Step Hyp Ref Expression
1 hhnv.1 U = + norm
2 1 hhnv U NrmCVec
3 1 2 h2hnm norm = norm CV U