Metamath Proof Explorer


Theorem hhnmoi

Description: The norm of an operator in Hilbert space. (Contributed by NM, 19-Nov-2007) (Revised by Mario Carneiro, 17-Nov-2013) (New usage is discouraged.)

Ref Expression
Hypotheses hhnmo.1 U = + norm
hhnmo.2 N = U normOp OLD U
Assertion hhnmoi norm op = N

Proof

Step Hyp Ref Expression
1 hhnmo.1 U = + norm
2 hhnmo.2 N = U normOp OLD U
3 df-nmop norm op = t sup x | y norm y 1 x = norm t y * <
4 1 hhnv U NrmCVec
5 1 hhba = BaseSet U
6 1 hhnm norm = norm CV U
7 5 5 6 6 2 nmoofval U NrmCVec U NrmCVec N = t sup x | y norm y 1 x = norm t y * <
8 4 4 7 mp2an N = t sup x | y norm y 1 x = norm t y * <
9 3 8 eqtr4i norm op = N