Metamath Proof Explorer


Theorem hhnv

Description: Hilbert space is a normed complex vector space. (Contributed by NM, 17-Nov-2007) (New usage is discouraged.)

Ref Expression
Hypothesis hhnv.1 U = + norm
Assertion hhnv U NrmCVec

Proof

Step Hyp Ref Expression
1 hhnv.1 U = + norm
2 hilablo + AbelOp
3 ablogrpo + AbelOp + GrpOp
4 2 3 ax-mp + GrpOp
5 ax-hfvadd + : ×
6 5 fdmi dom + = ×
7 4 6 grporn = ran +
8 hilid GId + = 0
9 8 eqcomi 0 = GId +
10 hilvc + CVec OLD
11 normf norm :
12 norm-i x norm x = 0 x = 0
13 12 biimpa x norm x = 0 x = 0
14 norm-iii y x norm y x = y norm x
15 norm-ii x y norm x + y norm x + norm y
16 7 9 10 11 13 14 15 1 isnvi U NrmCVec