Metamath Proof Explorer


Theorem hhshsslem1

Description: Lemma for hhsssh . (Contributed by NM, 10-Apr-2008) (New usage is discouraged.)

Ref Expression
Hypotheses hhsst.1 U = + norm
hhsst.2 W = + H × H × H norm H
hhssp3.3 W SubSp U
hhssp3.4 H
Assertion hhshsslem1 H = BaseSet W

Proof

Step Hyp Ref Expression
1 hhsst.1 U = + norm
2 hhsst.2 W = + H × H × H norm H
3 hhssp3.3 W SubSp U
4 hhssp3.4 H
5 eqid BaseSet W = BaseSet W
6 eqid + v W = + v W
7 5 6 bafval BaseSet W = ran + v W
8 1 hhnv U NrmCVec
9 eqid SubSp U = SubSp U
10 9 sspnv U NrmCVec W SubSp U W NrmCVec
11 8 3 10 mp2an W NrmCVec
12 6 nvgrp W NrmCVec + v W GrpOp
13 grporndm + v W GrpOp ran + v W = dom dom + v W
14 11 12 13 mp2b ran + v W = dom dom + v W
15 2 fveq2i + v W = + v + H × H × H norm H
16 eqid + v + H × H × H norm H = + v + H × H × H norm H
17 16 vafval + v + H × H × H norm H = 1 st 1 st + H × H × H norm H
18 opex + H × H × H V
19 normf norm :
20 ax-hilex V
21 fex norm : V norm V
22 19 20 21 mp2an norm V
23 22 resex norm H V
24 18 23 op1st 1 st + H × H × H norm H = + H × H × H
25 24 fveq2i 1 st 1 st + H × H × H norm H = 1 st + H × H × H
26 hilablo + AbelOp
27 resexg + AbelOp + H × H V
28 26 27 ax-mp + H × H V
29 hvmulex V
30 29 resex × H V
31 28 30 op1st 1 st + H × H × H = + H × H
32 25 31 eqtri 1 st 1 st + H × H × H norm H = + H × H
33 17 32 eqtri + v + H × H × H norm H = + H × H
34 15 33 eqtri + v W = + H × H
35 34 dmeqi dom + v W = dom + H × H
36 xpss12 H H H × H ×
37 4 4 36 mp2an H × H ×
38 ax-hfvadd + : ×
39 38 fdmi dom + = ×
40 37 39 sseqtrri H × H dom +
41 ssdmres H × H dom + dom + H × H = H × H
42 40 41 mpbi dom + H × H = H × H
43 35 42 eqtri dom + v W = H × H
44 43 dmeqi dom dom + v W = dom H × H
45 dmxpid dom H × H = H
46 44 45 eqtri dom dom + v W = H
47 14 46 eqtri ran + v W = H
48 7 47 eqtri BaseSet W = H
49 48 eqcomi H = BaseSet W