Metamath Proof Explorer


Theorem hhssablo

Description: Abelian group property of subspace addition. (Contributed by NM, 9-Apr-2008) (New usage is discouraged.)

Ref Expression
Assertion hhssablo H S + H × H AbelOp

Proof

Step Hyp Ref Expression
1 xpeq1 H = if H S H H × H = if H S H × H
2 xpeq2 H = if H S H if H S H × H = if H S H × if H S H
3 1 2 eqtrd H = if H S H H × H = if H S H × if H S H
4 3 reseq2d H = if H S H + H × H = + if H S H × if H S H
5 4 eleq1d H = if H S H + H × H AbelOp + if H S H × if H S H AbelOp
6 helsh S
7 6 elimel if H S H S
8 7 hhssabloi + if H S H × if H S H AbelOp
9 5 8 dedth H S + H × H AbelOp