Metamath Proof Explorer


Theorem hhssabloi

Description: Abelian group property of subspace addition. (Contributed by NM, 9-Apr-2008) (Revised by Mario Carneiro, 23-Dec-2013) (Proof shortened by AV, 27-Aug-2021) (New usage is discouraged.)

Ref Expression
Hypothesis hhssabl.1 H S
Assertion hhssabloi + H × H AbelOp

Proof

Step Hyp Ref Expression
1 hhssabl.1 H S
2 1 hhssabloilem + GrpOp + H × H GrpOp + H × H +
3 2 simp2i + H × H GrpOp
4 1 shssii H
5 xpss12 H H H × H ×
6 4 4 5 mp2an H × H ×
7 ax-hfvadd + : ×
8 7 fdmi dom + = ×
9 6 8 sseqtrri H × H dom +
10 ssdmres H × H dom + dom + H × H = H × H
11 9 10 mpbi dom + H × H = H × H
12 1 sheli x H x
13 1 sheli y H y
14 ax-hvcom x y x + y = y + x
15 12 13 14 syl2an x H y H x + y = y + x
16 ovres x H y H x + H × H y = x + y
17 ovres y H x H y + H × H x = y + x
18 17 ancoms x H y H y + H × H x = y + x
19 15 16 18 3eqtr4d x H y H x + H × H y = y + H × H x
20 3 11 19 isabloi + H × H AbelOp