Metamath Proof Explorer


Theorem hhssabloilem

Description: Lemma for hhssabloi . Formerly part of proof for hhssabloi which was based on the deprecated definition "SubGrpOp" for subgroups. (Contributed by NM, 9-Apr-2008) (Revised by Mario Carneiro, 23-Dec-2013) (Revised by AV, 27-Aug-2021) (New usage is discouraged.)

Ref Expression
Hypothesis hhssabl.1 H S
Assertion hhssabloilem + GrpOp + H × H GrpOp + H × H +

Proof

Step Hyp Ref Expression
1 hhssabl.1 H S
2 hilablo + AbelOp
3 ablogrpo + AbelOp + GrpOp
4 2 3 ax-mp + GrpOp
5 1 elexi H V
6 eqid ran + = ran +
7 6 grpofo + GrpOp + : ran + × ran + onto ran +
8 fof + : ran + × ran + onto ran + + : ran + × ran + ran +
9 4 7 8 mp2b + : ran + × ran + ran +
10 1 shssii H
11 df-hba = BaseSet + norm
12 eqid + norm = + norm
13 12 hhva + = + v + norm
14 11 13 bafval = ran +
15 10 14 sseqtri H ran +
16 xpss12 H ran + H ran + H × H ran + × ran +
17 15 15 16 mp2an H × H ran + × ran +
18 fssres + : ran + × ran + ran + H × H ran + × ran + + H × H : H × H ran +
19 9 17 18 mp2an + H × H : H × H ran +
20 ffn + H × H : H × H ran + + H × H Fn H × H
21 19 20 ax-mp + H × H Fn H × H
22 ovres x H y H x + H × H y = x + y
23 shaddcl H S x H y H x + y H
24 1 23 mp3an1 x H y H x + y H
25 22 24 eqeltrd x H y H x + H × H y H
26 25 rgen2 x H y H x + H × H y H
27 ffnov + H × H : H × H H + H × H Fn H × H x H y H x + H × H y H
28 21 26 27 mpbir2an + H × H : H × H H
29 22 oveq1d x H y H x + H × H y + z = x + y + z
30 29 3adant3 x H y H z H x + H × H y + z = x + y + z
31 ovres x + H × H y H z H x + H × H y + H × H z = x + H × H y + z
32 25 31 stoic3 x H y H z H x + H × H y + H × H z = x + H × H y + z
33 ovres y H z H y + H × H z = y + z
34 33 oveq2d y H z H x + y + H × H z = x + y + z
35 34 3adant1 x H y H z H x + y + H × H z = x + y + z
36 28 fovcl y H z H y + H × H z H
37 ovres x H y + H × H z H x + H × H y + H × H z = x + y + H × H z
38 36 37 sylan2 x H y H z H x + H × H y + H × H z = x + y + H × H z
39 38 3impb x H y H z H x + H × H y + H × H z = x + y + H × H z
40 15 sseli x H x ran +
41 15 sseli y H y ran +
42 15 sseli z H z ran +
43 6 grpoass + GrpOp x ran + y ran + z ran + x + y + z = x + y + z
44 4 43 mpan x ran + y ran + z ran + x + y + z = x + y + z
45 40 41 42 44 syl3an x H y H z H x + y + z = x + y + z
46 35 39 45 3eqtr4d x H y H z H x + H × H y + H × H z = x + y + z
47 30 32 46 3eqtr4d x H y H z H x + H × H y + H × H z = x + H × H y + H × H z
48 hilid GId + = 0
49 sh0 H S 0 H
50 1 49 ax-mp 0 H
51 48 50 eqeltri GId + H
52 ovres GId + H x H GId + + H × H x = GId + + x
53 51 52 mpan x H GId + + H × H x = GId + + x
54 eqid GId + = GId +
55 6 54 grpolid + GrpOp x ran + GId + + x = x
56 4 40 55 sylancr x H GId + + x = x
57 53 56 eqtrd x H GId + + H × H x = x
58 12 hhnv + norm NrmCVec
59 12 hhsm = 𝑠OLD + norm
60 eqid 2 nd 1 × V -1 = 2 nd 1 × V -1
61 13 59 60 nvinvfval + norm NrmCVec 2 nd 1 × V -1 = inv +
62 58 61 ax-mp 2 nd 1 × V -1 = inv +
63 62 eqcomi inv + = 2 nd 1 × V -1
64 63 fveq1i inv + x = 2 nd 1 × V -1 x
65 ax-hfvmul : ×
66 ffn : × Fn ×
67 65 66 ax-mp Fn ×
68 neg1cn 1
69 60 curry1val Fn × 1 2 nd 1 × V -1 x = -1 x
70 67 68 69 mp2an 2 nd 1 × V -1 x = -1 x
71 shmulcl H S 1 x H -1 x H
72 1 68 71 mp3an12 x H -1 x H
73 70 72 eqeltrid x H 2 nd 1 × V -1 x H
74 64 73 eqeltrid x H inv + x H
75 ovres inv + x H x H inv + x + H × H x = inv + x + x
76 74 75 mpancom x H inv + x + H × H x = inv + x + x
77 eqid inv + = inv +
78 6 54 77 grpolinv + GrpOp x ran + inv + x + x = GId +
79 4 40 78 sylancr x H inv + x + x = GId +
80 76 79 eqtrd x H inv + x + H × H x = GId +
81 5 28 47 51 57 74 80 isgrpoi + H × H GrpOp
82 resss + H × H +
83 4 81 82 3pm3.2i + GrpOp + H × H GrpOp + H × H +