Metamath Proof Explorer


Theorem hhssba

Description: The base set of a subspace. (Contributed by NM, 10-Apr-2008) (New usage is discouraged.)

Ref Expression
Hypotheses hhsssh2.1 W = + H × H × H norm H
hhssba.2 H S
Assertion hhssba H = BaseSet W

Proof

Step Hyp Ref Expression
1 hhsssh2.1 W = + H × H × H norm H
2 hhssba.2 H S
3 eqid + norm = + norm
4 3 1 hhsst H S W SubSp + norm
5 2 4 ax-mp W SubSp + norm
6 2 shssii H
7 3 1 5 6 hhshsslem1 H = BaseSet W