Metamath Proof Explorer


Theorem hhsscms

Description: The induced metric of a closed subspace is complete. (Contributed by NM, 10-Apr-2008) (Revised by Mario Carneiro, 14-May-2014) (New usage is discouraged.)

Ref Expression
Hypotheses hhssims2.1 W = + H × H × H norm H
hhssims2.3 D = IndMet W
hhsscms.3 H C
Assertion hhsscms D CMet H

Proof

Step Hyp Ref Expression
1 hhssims2.1 W = + H × H × H norm H
2 hhssims2.3 D = IndMet W
3 hhsscms.3 H C
4 eqid MetOpen D = MetOpen D
5 3 chshii H S
6 1 2 5 hhssmet D Met H
7 simpl f Cau D f : H f Cau D
8 1 2 5 hhssims2 D = norm - H × H
9 8 fveq2i Cau D = Cau norm - H × H
10 7 9 eleqtrdi f Cau D f : H f Cau norm - H × H
11 eqid norm - = norm -
12 11 hilxmet norm - ∞Met
13 simpr f Cau D f : H f : H
14 causs norm - ∞Met f : H f Cau norm - f Cau norm - H × H
15 12 13 14 sylancr f Cau D f : H f Cau norm - f Cau norm - H × H
16 10 15 mpbird f Cau D f : H f Cau norm -
17 3 chssii H
18 fss f : H H f :
19 13 17 18 sylancl f Cau D f : H f :
20 ax-hilex V
21 nnex V
22 20 21 elmap f f :
23 19 22 sylibr f Cau D f : H f
24 eqid + norm = + norm
25 24 11 hhims norm - = IndMet + norm
26 24 25 hhcau Cauchy = Cau norm -
27 26 elin2 f Cauchy f Cau norm - f
28 16 23 27 sylanbrc f Cau D f : H f Cauchy
29 ax-hcompl f Cauchy x f v x
30 vex f V
31 vex x V
32 30 31 breldm f v x f dom v
33 32 rexlimivw x f v x f dom v
34 28 29 33 3syl f Cau D f : H f dom v
35 hlimf v : dom v
36 ffun v : dom v Fun v
37 funfvbrb Fun v f dom v f v v f
38 35 36 37 mp2b f dom v f v v f
39 34 38 sylib f Cau D f : H f v v f
40 eqid MetOpen norm - = MetOpen norm -
41 24 25 40 hhlm v = t MetOpen norm -
42 resss t MetOpen norm - t MetOpen norm -
43 41 42 eqsstri v t MetOpen norm -
44 43 ssbri f v v f f t MetOpen norm - v f
45 39 44 syl f Cau D f : H f t MetOpen norm - v f
46 8 40 4 metrest norm - ∞Met H MetOpen norm - 𝑡 H = MetOpen D
47 12 17 46 mp2an MetOpen norm - 𝑡 H = MetOpen D
48 47 eqcomi MetOpen D = MetOpen norm - 𝑡 H
49 nnuz = 1
50 3 a1i f Cau D f : H H C
51 40 mopntop norm - ∞Met MetOpen norm - Top
52 12 51 mp1i f Cau D f : H MetOpen norm - Top
53 fvex v f V
54 53 chlimi H C f : H f v v f v f H
55 50 13 39 54 syl3anc f Cau D f : H v f H
56 1zzd f Cau D f : H 1
57 48 49 50 52 55 56 13 lmss f Cau D f : H f t MetOpen norm - v f f t MetOpen D v f
58 45 57 mpbid f Cau D f : H f t MetOpen D v f
59 30 53 breldm f t MetOpen D v f f dom t MetOpen D
60 58 59 syl f Cau D f : H f dom t MetOpen D
61 4 6 60 iscmet3i D CMet H