Metamath Proof Explorer


Theorem hhssmetdval

Description: Value of the distance function of the metric space of a subspace. (Contributed by NM, 10-Apr-2008) (New usage is discouraged.)

Ref Expression
Hypotheses hhssims2.1 W = + H × H × H norm H
hhssims2.3 D = IndMet W
hhssims2.2 H S
Assertion hhssmetdval A H B H A D B = norm A - B

Proof

Step Hyp Ref Expression
1 hhssims2.1 W = + H × H × H norm H
2 hhssims2.3 D = IndMet W
3 hhssims2.2 H S
4 1 3 hhssnv W NrmCVec
5 1 3 hhssba H = BaseSet W
6 1 3 hhssvs - H × H = - v W
7 1 hhssnm norm H = norm CV W
8 5 6 7 2 imsdval W NrmCVec A H B H A D B = norm H A - H × H B
9 4 8 mp3an1 A H B H A D B = norm H A - H × H B
10 ovres A H B H A - H × H B = A - B
11 10 fveq2d A H B H norm H A - H × H B = norm H A - B
12 shsubcl H S A H B H A - B H
13 3 12 mp3an1 A H B H A - B H
14 fvres A - B H norm H A - B = norm A - B
15 13 14 syl A H B H norm H A - B = norm A - B
16 9 11 15 3eqtrd A H B H A D B = norm A - B