Metamath Proof Explorer


Theorem hhssnm

Description: The norm operation on a subspace. (Contributed by NM, 8-Apr-2008) (New usage is discouraged.)

Ref Expression
Hypothesis hhss.1 W = + H × H × H norm H
Assertion hhssnm norm H = norm CV W

Proof

Step Hyp Ref Expression
1 hhss.1 W = + H × H × H norm H
2 eqid norm CV W = norm CV W
3 2 nmcvfval norm CV W = 2 nd W
4 1 fveq2i 2 nd W = 2 nd + H × H × H norm H
5 opex + H × H × H V
6 normf norm :
7 ax-hilex V
8 fex norm : V norm V
9 6 7 8 mp2an norm V
10 9 resex norm H V
11 5 10 op2nd 2 nd + H × H × H norm H = norm H
12 3 4 11 3eqtrri norm H = norm CV W