Metamath Proof Explorer


Theorem hhsssh2

Description: The predicate " H is a subspace of Hilbert space." (Contributed by NM, 8-Apr-2008) (New usage is discouraged.)

Ref Expression
Hypothesis hhsssh2.1 W = + H × H × H norm H
Assertion hhsssh2 H S W NrmCVec H

Proof

Step Hyp Ref Expression
1 hhsssh2.1 W = + H × H × H norm H
2 eqid + norm = + norm
3 2 1 hhsssh H S W SubSp + norm H
4 resss + H × H +
5 resss × H
6 resss norm H norm
7 4 5 6 3pm3.2i + H × H + × H norm H norm
8 2 hhnv + norm NrmCVec
9 2 hhva + = + v + norm
10 1 hhssva + H × H = + v W
11 2 hhsm = 𝑠OLD + norm
12 1 hhsssm × H = 𝑠OLD W
13 2 hhnm norm = norm CV + norm
14 1 hhssnm norm H = norm CV W
15 eqid SubSp + norm = SubSp + norm
16 9 10 11 12 13 14 15 isssp + norm NrmCVec W SubSp + norm W NrmCVec + H × H + × H norm H norm
17 8 16 ax-mp W SubSp + norm W NrmCVec + H × H + × H norm H norm
18 7 17 mpbiran2 W SubSp + norm W NrmCVec
19 18 anbi1i W SubSp + norm H W NrmCVec H
20 3 19 bitri H S W NrmCVec H