Metamath Proof Explorer


Theorem hi2eq

Description: Lemma used to prove equality of vectors. (Contributed by NM, 16-Nov-1999) (New usage is discouraged.)

Ref Expression
Assertion hi2eq ABAihA-B=BihA-BA=B

Proof

Step Hyp Ref Expression
1 hvsubcl ABA-B
2 his2sub ABA-BA-BihA-B=AihA-BBihA-B
3 1 2 mpd3an3 ABA-BihA-B=AihA-BBihA-B
4 3 eqeq1d ABA-BihA-B=0AihA-BBihA-B=0
5 his6 A-BA-BihA-B=0A-B=0
6 1 5 syl ABA-BihA-B=0A-B=0
7 4 6 bitr3d ABAihA-BBihA-B=0A-B=0
8 hicl AA-BAihA-B
9 1 8 syldan ABAihA-B
10 simpr ABB
11 hicl BA-BBihA-B
12 10 1 11 syl2anc ABBihA-B
13 9 12 subeq0ad ABAihA-BBihA-B=0AihA-B=BihA-B
14 hvsubeq0 ABA-B=0A=B
15 7 13 14 3bitr3d ABAihA-B=BihA-BA=B