Metamath Proof Explorer


Theorem hi2eq

Description: Lemma used to prove equality of vectors. (Contributed by NM, 16-Nov-1999) (New usage is discouraged.)

Ref Expression
Assertion hi2eq A B A ih A - B = B ih A - B A = B

Proof

Step Hyp Ref Expression
1 hvsubcl A B A - B
2 his2sub A B A - B A - B ih A - B = A ih A - B B ih A - B
3 1 2 mpd3an3 A B A - B ih A - B = A ih A - B B ih A - B
4 3 eqeq1d A B A - B ih A - B = 0 A ih A - B B ih A - B = 0
5 his6 A - B A - B ih A - B = 0 A - B = 0
6 1 5 syl A B A - B ih A - B = 0 A - B = 0
7 4 6 bitr3d A B A ih A - B B ih A - B = 0 A - B = 0
8 hicl A A - B A ih A - B
9 1 8 syldan A B A ih A - B
10 simpr A B B
11 hicl B A - B B ih A - B
12 10 1 11 syl2anc A B B ih A - B
13 9 12 subeq0ad A B A ih A - B B ih A - B = 0 A ih A - B = B ih A - B
14 hvsubeq0 A B A - B = 0 A = B
15 7 13 14 3bitr3d A B A ih A - B = B ih A - B A = B