Metamath Proof Explorer


Theorem hial2eq

Description: Two vectors whose inner product is always equal are equal. (Contributed by NM, 16-Nov-1999) (New usage is discouraged.)

Ref Expression
Assertion hial2eq A B x A ih x = B ih x A = B

Proof

Step Hyp Ref Expression
1 hvsubcl A B A - B
2 oveq2 x = A - B A ih x = A ih A - B
3 oveq2 x = A - B B ih x = B ih A - B
4 2 3 eqeq12d x = A - B A ih x = B ih x A ih A - B = B ih A - B
5 4 rspcv A - B x A ih x = B ih x A ih A - B = B ih A - B
6 1 5 syl A B x A ih x = B ih x A ih A - B = B ih A - B
7 hi2eq A B A ih A - B = B ih A - B A = B
8 6 7 sylibd A B x A ih x = B ih x A = B
9 oveq1 A = B A ih x = B ih x
10 9 ralrimivw A = B x A ih x = B ih x
11 8 10 impbid1 A B x A ih x = B ih x A = B