Metamath Proof Explorer


Theorem hilablo

Description: Hilbert space vector addition is an Abelian group operation. (Contributed by NM, 15-Apr-2007) (New usage is discouraged.)

Ref Expression
Assertion hilablo + AbelOp

Proof

Step Hyp Ref Expression
1 ax-hilex V
2 ax-hfvadd + : ×
3 ax-hvass x y z x + y + z = x + y + z
4 ax-hv0cl 0
5 hvaddid2 x 0 + x = x
6 neg1cn 1
7 hvmulcl 1 x -1 x
8 6 7 mpan x -1 x
9 ax-hvcom -1 x x -1 x + x = x + -1 x
10 8 9 mpancom x -1 x + x = x + -1 x
11 hvnegid x x + -1 x = 0
12 10 11 eqtrd x -1 x + x = 0
13 1 2 3 4 5 8 12 isgrpoi + GrpOp
14 2 fdmi dom + = ×
15 ax-hvcom x y x + y = y + x
16 13 14 15 isabloi + AbelOp