Metamath Proof Explorer


Theorem hilcms

Description: The Hilbert space norm determines a complete metric space. (Contributed by NM, 17-Apr-2007) (New usage is discouraged.)

Ref Expression
Hypothesis hilcms.1 D = norm -
Assertion hilcms D CMet

Proof

Step Hyp Ref Expression
1 hilcms.1 D = norm -
2 eqid + norm = + norm
3 2 1 hhims D = IndMet + norm
4 2 3 hhcms D CMet