Metamath Proof Explorer


Theorem hilhhi

Description: Deduce the structure of Hilbert space from its components. (Contributed by NM, 10-Apr-2008) (New usage is discouraged.)

Ref Expression
Hypotheses hilhh.1 = BaseSet U
hilhh.2 + = + v U
hilhh.3 = 𝑠OLD U
hilhh.5 ih = 𝑖OLD U
hilhh.9 U NrmCVec
Assertion hilhhi U = + norm

Proof

Step Hyp Ref Expression
1 hilhh.1 = BaseSet U
2 hilhh.2 + = + v U
3 hilhh.3 = 𝑠OLD U
4 hilhh.5 ih = 𝑖OLD U
5 hilhh.9 U NrmCVec
6 1 4 5 hilnormi norm = norm CV U
7 2 3 6 nvop U NrmCVec U = + norm
8 5 7 ax-mp U = + norm