Metamath Proof Explorer


Theorem hilid

Description: The group identity element of Hilbert space vector addition is the zero vector. (Contributed by NM, 16-Apr-2007) (New usage is discouraged.)

Ref Expression
Assertion hilid GId + = 0

Proof

Step Hyp Ref Expression
1 hilablo + AbelOp
2 ablogrpo + AbelOp + GrpOp
3 1 2 ax-mp + GrpOp
4 ax-hfvadd + : ×
5 4 fdmi dom + = ×
6 3 5 grporn = ran +
7 eqid GId + = GId +
8 6 7 grpoidval + GrpOp GId + = ι y | x y + x = x
9 3 8 ax-mp GId + = ι y | x y + x = x
10 hvaddid2 x 0 + x = x
11 10 rgen x 0 + x = x
12 ax-hv0cl 0
13 6 grpoideu + GrpOp ∃! y x y + x = x
14 3 13 ax-mp ∃! y x y + x = x
15 oveq1 y = 0 y + x = 0 + x
16 15 eqeq1d y = 0 y + x = x 0 + x = x
17 16 ralbidv y = 0 x y + x = x x 0 + x = x
18 17 riota2 0 ∃! y x y + x = x x 0 + x = x ι y | x y + x = x = 0
19 12 14 18 mp2an x 0 + x = x ι y | x y + x = x = 0
20 11 19 mpbi ι y | x y + x = x = 0
21 9 20 eqtri GId + = 0