Metamath Proof Explorer


Theorem hilims

Description: Hilbert space distance metric. (Contributed by NM, 13-Sep-2007) (New usage is discouraged.)

Ref Expression
Hypotheses hilims.1 = BaseSet U
hilims.2 + = + v U
hilims.3 = 𝑠OLD U
hilims.5 ih = 𝑖OLD U
hilims.8 D = IndMet U
hilims.9 U NrmCVec
Assertion hilims D = norm -

Proof

Step Hyp Ref Expression
1 hilims.1 = BaseSet U
2 hilims.2 + = + v U
3 hilims.3 = 𝑠OLD U
4 hilims.5 ih = 𝑖OLD U
5 hilims.8 D = IndMet U
6 hilims.9 U NrmCVec
7 1 2 3 4 6 hilhhi U = + norm
8 7 5 hhims2 D = norm -