Metamath Proof Explorer


Theorem hilnormi

Description: Hilbert space norm in terms of vector space norm. (Contributed by NM, 11-Sep-2007) (Revised by Mario Carneiro, 23-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypotheses hilnorm.5 = BaseSet U
hilnorm.2 ih = 𝑖OLD U
hilnorm.9 U NrmCVec
Assertion hilnormi norm = norm CV U

Proof

Step Hyp Ref Expression
1 hilnorm.5 = BaseSet U
2 hilnorm.2 ih = 𝑖OLD U
3 hilnorm.9 U NrmCVec
4 eqid norm CV U = norm CV U
5 1 4 2 ipnm U NrmCVec x norm CV U x = x ih x
6 3 5 mpan x norm CV U x = x ih x
7 6 mpteq2ia x norm CV U x = x x ih x
8 1 4 nvf U NrmCVec norm CV U :
9 8 feqmptd U NrmCVec norm CV U = x norm CV U x
10 3 9 ax-mp norm CV U = x norm CV U x
11 dfhnorm2 norm = x x ih x
12 7 10 11 3eqtr4ri norm = norm CV U