Metamath Proof Explorer


Theorem hilvc

Description: Hilbert space is a complex vector space. Vector addition is +h , and scalar product is .h . (Contributed by NM, 15-Apr-2007) (New usage is discouraged.)

Ref Expression
Assertion hilvc + CVec OLD

Proof

Step Hyp Ref Expression
1 hilablo + AbelOp
2 ax-hfvadd + : ×
3 2 fdmi dom + = ×
4 ax-hfvmul : ×
5 ax-hvmulid x 1 x = x
6 ax-hvdistr1 y x z y x + z = y x + y z
7 ax-hvdistr2 y z x y + z x = y x + z x
8 ax-hvmulass y z x y z x = y z x
9 eqid + = +
10 1 3 4 5 6 7 8 9 isvciOLD + CVec OLD